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The dynamic soft sensor based on a single Gaussian process regression (GPR) model has been developed in
fermentation processes. However, limitations of single regression models, for multiphase/multimode fermentation
processes, may result in large prediction errors and complexity of the soft sensor. Therefore, a dynamic soft sensor
based on Gaussian mixture regression (GMR) was proposed to overcome the problems. Two structure parameters,
the number of Gaussian components and the order of the model, are crucial to the soft sensor model. To achieve a
simple and effective soft sensor, an iterative strategy was proposed to optimize the two structure parameters
synchronously. For the aim of comparisons, the proposed dynamic GMR soft sensor and the existing dynamic
GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and
an industrial Erythromycin fermentation process. Results show that the proposed dynamic GMR soft sensor has
higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes.
© 2016 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.
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1. Introduction

In fermentation processes, some important quality variables, e.g.,
biomass concentration, are difficult to measure online due to measure-
ment limitations such as cost, reliability, and long dead time. From the
viewpoint of control and optimization, these measurement limitations
may cause important problems such as product loss, energy loss, and
undesired byproduct generation. Over the past decades, soft sensors
have been widely used to tackle these problems, which provide
frequent estimations of key process variables through those that are
easy to be measured online [1–4].

Themost popular soft sensormethods are partial least squares (PLS)
[5,6], artificial neural networks (ANN) [7,8], and support vector ma-
chines (SVM) [2,9]. Recent reviews of soft sensor methods can be
found in [4,1,10]. Usually, soft sensors are constructed based on process
measurements easy to measure online. From the viewpoint of measur-
ing, one of the main disadvantages of those traditional soft sensors is
lacking information of precision. That restricts above-mentioned soft
sensors in practical cases. Another important problem which cannot
be ignored is that dynamic multiphase/multimode processes are wide
in fermentation processes and cannot be modeled effectively by single
data driven regression models [11], e.g., PLS, ANN and SVM. Generally

speaking, these processes may result in complexity and poor perfor-
mance of single models.

Recently, a relative newmachine learningmethod, i.e., Gaussianpro-
cess regression (GPR), has been developed, and began to be applied in
soft sensor modeling [12,13]. GPR is usually trained by optimizing the
hyperparameters using the expectation maximization (EM) algorithm
with the squared exponential covariance function which is commonly
employed [14]. This regression method has many useful features that
distinguish it from other machine learning techniques, particularly in
the field of nonlinear modeling, such as ability to measure prediction
confidence, few training hyper-parameters and possibility to include
prior knowledge into the model. It should be noticed that GPR soft
sensors are constructed based on the assumption that process data are
generated from a single operating region and follow a unimodal Gaussian
distribution. However, for complexmultimode/multiphase processes, the
basic assumption of multivariate Gaussian distribution may not be met
because of themean shifts or covariance changes. Then Gaussianmixture
regression (GMR)was introduced to construct soft sensors for those com-
plex processes [11]. Besides the process characteristics of multimode/
multiphase, it cannot be neglected that fermentation processes are dy-
namic systems. Conventional static soft sensors commonly rely on the as-
sumption that processes are operating at steady states. It was pointed out
that based on static regression models applied in a dynamic process may
result in complexity ofmodeling and large errors of estimates [15,16]. Re-
cently, considering the merits of GPR and dynamics in processes, a dy-
namic GPR soft sensor was proposed to estimate biomass concentration
in a fermentationprocess [13]. In themodel, besides inputmeasurements,
delayed outputs are also fed back and used as regressors. However,
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regressors of the GPR soft sensor were selected heuristically fromnumer-
ous alternatives [13]. A systematic method of selecting regressors needs
to be studied further.

For dynamic multiphase/multimode fermentation processes, this
paper presented a systematic method of constructing a dynamic GMR
soft sensor to overcome the abovementioned problems. How to
optimize the number of Gaussian components and select regressors are
crucial to the dynamic GMR soft sensor. The former is related to the num-
ber of process phases/modes [11], and the latter can be represented using
the order of the model. In the work, for simplicity and effectiveness of
modeling the soft sensor, an iterative strategy was presented to optimize
the two parameters simultaneously. In the strategy, the Bayesian
information criterion (BIC) commonly used in the field of modeling is
employed as an evaluation criterion to determine the structure of the
soft sensor model.

The remainder of this paper is organized as follows. The GMR and
the expectation maximization (EM) estimation are introduced in
Section 2. Then, in Section 3, we introduce the proposed dynamic
GMR soft sensor and the iterative strategy. A numerical example and
an application example are investigated together to verify the effective-
ness of the proposed GMR soft sensor in Section 4. Finally, in Section 5,
conclusions are made.

2. Introduction to GMR and Expectation Maximization Estimation

2.1. GMR

Assume X represents the space of the explanatory variables and Y is
the space of the response variables. x is the input of training data (x∈X)
and y is the ideal output data (y∈Y). For the given x and y, the joint
probability density is given as [17]

f XY x; yð Þ ¼
XK
j¼1

π jϕ x; y; μ j;∑ j

� �
ð1Þ

where, subsequently, the mean μ j and covariance ∑j can be divided
into the input and output parts like the following

μ j ¼
μ jx
μ jy

� �
;
X

j
¼

X
jXX

X
jXYX

jYX

X
jYY

" #

Eq. (1) shows that the relationship between the explanatory vari-
ables and the prediction value can be described by Gaussian mixture
models (GMMs) where ϕ(x,y;μ j,∑j) denotes the probability density
function of themultivariate GMM. The parameters of thismodel include
the number of the mixture components K, the prior πj, the mean value
μ j, and the variance of each Gaussian component∑ j, which are repre-
sented as θ=(θ1,θ2, ⋯ ,θk) with θ j ¼ ðπ j; μ j;∑ jÞ and the constraint

∑
k

j¼1
π j ¼ 1ð0≤π j≤1Þ.

Similarly, the marginal probability density can be given as [17]

f X xð Þ ¼
Z
f X;Y x; yð Þdy ¼

XK
j¼1

π jϕ x; μ jX ;
X

jX

� �
ð2Þ

The global GMR function can be deduced by combining Eqs. (1) and
(2)

f Y=X y=xð Þ ¼ f XY x; yð Þ
f X xð Þ ¼

XK
j¼1

wj xð Þϕ y;mj xð Þ;σ2
j

� �
ð3Þ

with the mixing weight

wj xð Þ ¼
π jϕ x; μ jX ;∑jX

� �
XK
j¼1

π jϕ x; μ jX ;∑jX

� � ð4Þ

The mean and the variance of the conditional distribution can be
acquired in closed form by

mj xð Þ ¼ μ jX þ
X
jYX

X−1

jX
x−μ jX

� �
ð5Þ
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The prediction given a new input can be obtained by computing the
expectation over the conditional distribution fY/X(y/x) [17]

E f Y=X y=xð Þ
h i

¼
XK
j¼1

wj xð Þmj xð Þ ð7Þ

It can be seen that the weight function wj(x) is not determined by
the local structure of the data but the components of a global GMM.
Therefore, the GMR model is a global parametric model with nonpara-
metric flexibility.

2.2. EM algorithm for GMMs

To use a GMM, the unknown parameter set θ of probabilistic weights
and model parameters of each Gaussian component should be estimated
first. Commonmethods for this problem include themaximum likelihood
estimation (MLE) and EMalgorithm.With a set of given data (X,Y)which
is realized by estimating model parameters θ in Eq. (1). This process can
be realized by maximizing the log-likelihood function L(θk) which can
be expressed as [18]

L θkð Þ ¼ ln ∏
N

i¼1
p xi; yið Þ ¼

XN
i¼1

ln
XK
j¼1

π jϕ x; y; μ j;
X

j

� �
ð8Þ

For the given training data, θ is calculated by maximizing this
function with the EM algorithm in the iterative means. It includes two
steps [19].

(1) E-step (expectation step)

p sð Þ lk=xið Þ ¼
π sð Þ
j ϕ X; μ sð Þ

j ;
X sð Þ

j

� �
p sð Þ xi; θð Þ i ¼ 1;2;⋯N; j ¼ 1;2;⋯kð Þ ð9Þ

where p(s)(lk/xi) denotes the posterior probability of the ith training
sample within the kth Gaussian component at the sth iteration.

(2) M-step (maximum step)

μ sþ1ð Þ
j ¼ 1

π jN

XN
i¼1

p sð Þ lk=xið Þxi ð10Þ

X sþ1ð Þ
j

¼ 1
π jN

XN
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ð11Þ

π sþ1ð Þ
j ¼ 1

N

XN
i¼1
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where μ j
(s+1), ∑ðsþ1Þ

j , and πj(s+1) are the mean, covariance, and prior
probability of the kth Gaussian component at the (s + 1)th iteration,
respectively.
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