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a b s t r a c t 

Large kinetic mechanisms are required in order to accurately model combustion systems. If no parame- 

terization of the thermo-chemical state-space is used, solution of the species transport equations can be- 

come computationally prohibitive as the resulting system involves a wide range of time and length scales. 

Parameterization of the thermo-chemical state-space with an a priori prescription of the dimension of the 

underlying manifold would lead to a reduced yet accurate description. To this end, the potential offered 

by Principal Component Analysis (PCA) in identifying low-dimensional manifolds is very appealing. The 

present work seeks to advance the understanding and application of the PC-transport approach by analyz- 

ing the ability to parameterize the thermo-chemical state with the PCA basis using nonlinear regression. 

In order to demonstrate the accuracy of the method within a numerical solver, unsteady perfectly stirred 

reactor (PSR) calculations are shown using the PC-transport approach. The PSR analysis extends previ- 

ous investigations to more complex fuels (methane and propane), showing the ability of the approach 

to deal with relatively large kinetic mechanisms. The ability to achieve highly accurate mapping through 

Gaussian Process based nonlinear regression is also shown. In addition, a novel method based on local 

regression of the PC source terms is also investigated which leads to improved results. 

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

The numerical modeling of turbulent combustion is a very chal- 

lenging task as it combines the complex phenomena of turbulence 

and chemical reactions. This study becomes even more challeng- 

ing when large detailed kinetic mechanisms are used in order to 

understand some special features such as pollutant formation. A 

detailed combustion mechanism for a simple fuel such as methane 

involves 53 species and 325 chemical reactions [1] . Moreover, the 

number of species and reactions increases with increasing fuel 

complexity. The coupling of the kinetic equations with the set of 

Navier–Stokes equations results in a problem that is too complex 

to be solved by the current computational means. In a CFD calcula- 

tion, the number of species tracked impacts the memory usage and 

CPU time. It is thus important to minimize this number by the use 

of a simpler but representative set of variables. Therefore, there is a 

need for methods allowing to parameterize efficiently the thermo- 
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chemical state of a reacting system with a reduced number of op- 

timal reaction variables. Among those, Principal Component Analy- 

sis (PCA) appears as an ideal candidate to fulfill the purpose [2–8] . 

PCA offers the possibility of automatically reducing the dimension- 

ality of data sets consisting of a large number of correlated vari- 

ables, while retaining most of the variation present in the origi- 

nal data. After reduction, the new set of variables, called principal 

components (PCs), are orthogonal, uncorrelated and linear combi- 

nations of the original variables. By retaining the PCs containing 

most of the variance and transporting them in a numerical sim- 

ulation, the dimensionality of the system can be highly reduced. 

Another advantage of PCA resides in the fact that the PCs can be 

obtained through data sets based on simple systems (such as 

canonical reactors) and then applied to a similar, more complex 

system [9] . A methodology based on PCA was proposed [5] for 

the identification of the controlling dynamics in reacting systems 

and for the consistent reduction of very large kinetic mechanisms. 

Sutherland and Parente [8] proposed a combustion model based on 

the concepts from PCA (PC-score approach). They derived trans- 

port equations for the principal components (PCs), and proposed 

a model where the state-space variables are constructed directly 
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from the PCs. The PCA-based modeling approach was enhanced 

[3,10,11] by combining PCA with nonlinear regression techniques, 

allowing a nonlinear mapping of the thermo-chemical state and 

the corresponding source terms onto the basis identified by the 

principal components. As a result, the nonlinear nature of chem- 

ical manifolds is better captured, thus, maximizing the potential 

size reduction provided by the method. Isaac et al. [4] and Echekki 

and Mirgolbabaei [2] provided the first a posteriori studies on the 

use of the PC-score approach. In particular, Isaac et al. showed in 

[4] the potential of PC-transport based combustion models coupled 

with nonlinear regression techniques. The model was tested on 

an unsteady calculation of a perfectly stirred reactor (PSR) burn- 

ing syngas. The authors showed that Gaussian Process Regression 

(GPR) technique produced the most accurate reconstruction, show- 

ing remarkable accuracy for the prediction of temperature and ma- 

jor and minor species with 2 transported variables instead of 11. 

The approach was also tested for the first time within a CFD solver. 

The present work seeks to advance the understanding and ap- 

plication of the PC-transport approach by applying this method to 

more complex fuels such as methane and propane. First, 0-D sim- 

ulation of a PSR is used to generate the database for model train- 

ing. Then, the solution of a steady and unsteady PSR calculation 

using the PC-transport approach for large kinetic mechanisms is 

compared with the full solution. Next, the PC-transport approach 

is coupled with nonlinear regression (PC-GPR) in order to increase 

the size reduction potential of PCA. Finally, the first study on an 

enhancement of the classical PC-transport approach by the use of 

local nonlinear regression (PC-L-GPR) is also shown. It should be 

pointed out that the objective of the present work was to demon- 

strate the applicability of GPR regression for accurate source term 

regression. To this purpose, the choice of a PSR is quite obvious 

as it allows to focus on such an aspect without the influence of 

transport processes. 

2. Principal component analysis 

Principal Component Analysis [12] is a useful statistical tech- 

nique that has found application in combustion for its ability 

of identifying low-dimensional manifolds. In high dimension data 

sets, where graphical representation is not possible, PCA can be a 

powerful tool as it identifies correlations and patterns in a data 

set. Once these patterns have been identified, the data set can be 

compressed by reducing the number of dimensions without much 

loss of information. PCA analyzes the covariance between variables 

in a data set and identifies a linear representation of the system 

through orthogonal vectors, each one having a significance propor- 

tional to its eigenvalue. 

In order to perform principal component analysis, a data-set 

X ( n × Q ) consisting of n observations of Q independent variables 

is needed. Then, the data must be centered (by subtracting its 

mean) and scaled (using an appropriate scaling method): center- 

ing is used to convert observations into fluctuations over the mean, 

while scaling is done in order to compare the data evenly (if they 

have different units or order of magnitudes): 

X SC = (X − X ) D 

−1 (1) 

where X is ( n × Q ) matrix containing the mean of each variable and 

D is a ( n × Q ) matrix containing the scaling factor of each variable. 

Several scaling methods can be found in the literature: auto scal- 

ing, range scaling, pareto scaling, variable stability scaling and level 

scaling [6] . 

Then, one can compute the covariance matrix S defined as (the 

notation X will be used in the following instead of X SC for the sake 

of simplicity): 

S = 

1 

n − 1 

X 

T X 

The diagonal elements of S represent the variance of each vari- 

able, while the off-diagonal values show the covariance between 

two variables. Since S is a square matrix (of size ( Q × Q )), an eigen- 

value decomposition can be performed yielding the eigenvectors 

and eigenvalues of the system: 

S = ALA 

T 

where A ( Q × Q ) and L ( Q × Q ) are respectively the eigenvectors of 

S (also called principal components, PCs) and the eigenvalues of S , 

in decreasing order. The eigenvectors matrix A , also called the basis 

matrix, is used to obtain the principal component scores, Z ( n × Q ), 

by projecting the original data set X on that basis: 

Z = XA (2) 

Eq. (2) indicates that the original data set can be uniquely recov- 

ered using the PCs and their scores: 

X = ZA 

−1 

where A 

−1 = A 

T . Then, using a subset of A by retaining only q PCs 

(with q < Q ), noted A q , an approximation of X based on the first q 

eigenvectors ( X q ) is obtained: 

X � X q = Z q A 

T 
q 

where X q is the approximation of X based on the first q eigen- 

vectors of Q , and Z q is the ( n × q ) matrix of the principal compo- 

nent scores. In the PC analysis, the largest eigenvalues correspond 

to the first columns of A . This means the largest amount of vari- 

ance in the original variables is described by the first PCs. Thus, 

the truncation is made on the last eigenvectors (corresponding to 

the smallest eigenvalues). By removing the last PCs, the dimension 

of the system is reduced while retaining most of the variation in 

the system. 

2.1. PC-score approach 

In the work of Sutherland and Parente [8] , a model based on 

transport equations for the PCs is proposed derived from the gen- 

eral species transport equation: 

∂ 

∂t 
( ρY k ) + ∇ ( ρū Y k ) = ∇ ( ρD k ∇Y k ) + R k k = 1 , ..., n s (3) 

where Y k is the mass fraction of species k and R k is its correspond- 

ing source term (with n s the total number of species in the sys- 

tem), D k the diffusion coefficient for species k, ρ the density and 

ū the velocity vector. Transport equations for the PC scores ( Z ) can 

be formulated from Eq. (3) given the basis matrix A and the scaling 

factors d k : 

∂ 

∂t 
( ρz ) + ∇ ( ρū z ) = ∇ ( ρD z ∇z ) + s z (4) 

s z = 

Q ∑ 

k = 1 

R k 

d k 

A kq (5) 

where z = Z 

t 
i 

r epr esents an individual scor e r ealization. One of the 

major weaknesses of classic PCA is that a multi-linear model is 

used to approximate a highly nonlinear manifold. The nonlinearity 

of chemical manifolds can be attributed to the high nonlinearity of 

chemical source terms (Arrhenius). This can be visualized in Fig. 1 , 

showing the first principal component source term s z 1 , as a func- 

tion of the first two principal components for the propane case. 

In the present work, PCA is used to identify the most appropri- 

ate basis to parameterize the empirical low-dimensional manifolds 

and define transport equations in the new space (see Eq. 4 and 

5 ). Then, both the state space and the source terms are nonlin- 

early regressed onto the new basis using several approaches, de- 

scribed in Section 3 . The nonlinear regression of the chemical state 
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