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a b s t r a c t 

This paper concerns the influence of the phase of the heat release response on thermoacoustic systems. 

We focus on one pair of degenerate azimuthal acoustic modes, with frequency ω 0 . The same results 

apply for an axial acoustic mode. We show how the value φ0 and the slope −τ of the flame phase 

at the frequency ω 0 affects the boundary of stability, the frequency and amplitude of oscillation, and 

the phase φqp between heat release rate and acoustic pressure. This effect depends on φ0 and on the 

nondimensional number τω 0 , which can be quickly calculated. We find for example that systems with 

large values of τω 0 are more prone to oscillate, i.e. they are more likely to have larger growth rates, 

and that at very large values of τω 0 the value φ0 of the flame phase at ω 0 does not play a role in 

determining the system’s stability. Moreover for a fixed flame gain, a flame whose phase changes rapidly 

with frequency is more likely to excite an acoustic mode. 

We propose ranges for typical values of nondimensional acoustic damping rates, frequency shifts and 

growth rates based on a literature review. We study the system in the nonlinear regime by applying the 

method of averaging and of multiple scales. We show how to account in the time domain for a varying 

frequency of oscillation as a function of amplitude, and validate these results with extensive numerical 

simulations for the parameters in the proposed ranges. We show that the frequency of oscillation ω B and 

the flame phase φqp at the limit cycle match the respective values on the boundary of stability. We find 

good agreement between the model and thermoacoustic experiments, both in terms of the ratio ω B / ω 0 

and of the phase φqp , and provide an interpretation of the transition between different thermoacoustic 

states of an experiment. We discuss the effect of neglecting the component of heat release rate not in 

phase with the pressure p as assumed in previous studies. We show that this component should not 

be neglected when making a prediction of the system’s stability and amplitudes, but we present some 

evidence that it may be neglected when identifying a system that is unstable and is already oscillating 

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

We first review fundamentals of thermoacoustic instabilities in 

Section 1.1 and present three key questions on the subject, then 

review the existing literature in Section 1.2 , and briefly outline the 

paper in Section 1.3 . 

1.1. Motivation of this work 

Rayleigh [1] was the first to observe that if part of the fluctu- 

ating heat release rate q is in phase with the acoustic pressure p 

self sustained acoustic oscillations can occur. Accounting also for 

acoustic losses [2,3] , considering the case of a single acoustically 
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compact flame and assuming a low Mach number flow, the crite- 

rion requires that 

1 

T 

∫ t+ T 

t 

q (t) p(t) dt > acoustic losses (1) 

where T = 2 π/ω is the period of the thermoacoustic instability 

and ω its angular frequency, q and p are considered at the flame 

location, and we assume thermodynamic equilibrium and a perfect 

gas. Under suitable assumptions discussed later, one can express 1 

the fluctuating heat release rate as function of the pressure p as 

q = Q [ p] . For the sake of brevity, in the following we will often re- 

fer to q as the flame response to the pressure p , or simply as the 

flame response. We assume and substitute a sinusoidal pressure 

1 With the exception of the trivial cases where the flame is located at a pressure 

node of the acoustic field at frequency ω. These cases cannot be unstable because 

the left hand side of (1) is zero. 
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Nomenclature 

′ the prime denotes time derivative of the preceding 

quantity 

ˆ the hat denotes the Fourier transform of the under- 

lying quantity 

u acoustic velocity in the azimuthal direction, suitably 

nondimensionalised 

u ax acoustic velocity in the axial direction, typically 

long the axis of the burner, suitably nondimension- 

alised 

p acoustic pressure, suitably nondimensionalized 

q fluctuating heat release rate, suitably nondimen- 

sionalised, often called flame response 

Q ( A , ω ) describing function of the fluctuating heat release 

rate q = q [ p] as function of p . Defined in (3) 

n azimuthal order of the mode, e.g. n = 3 refers to the 

third azimuthal 

A j slowly varying amplitudes of oscillations, intro- 

duced in (29) 

α equivalent acoustic damping coefficient, appearing 

in (7b) 

β flame strength, i.e. the nondimensional linear flame 

response gain as function of p , as in | q | ∝ β| p | 

γ k standard deviation of the k -th time delay, see (12) , 

appearing also in Fig. 4 

δ nonlinear saturation coeff. as in (37a) 

ηj n amplitudes of the azimuthal acoustic velocity of the 

2 modes as in (8) , for j = 1 , 2 

η′ 
j 

amplitudes of the acoustic pressure of the 2 modes 

as in (8) , for j = 1 , 2 

θ azimuthal coordinate along the annular combustion 

chamber, θ ∈ [0, 2 π ) 

κ nonlinear saturation coefficient, appearing in (16) 

λ eigenvalue, λ = σ + iω, with ω in rad/s 

μ L2 norm of the mode, as defined in (11) 

ν expression for the growth rate appearing in (38) 

σ growth rate, i.e. real part of the eigenvalue λ = σ + 

iω
τ equivalent time delay of the transfer function ˆ q / ̂  p 

as introduced in (15) , i.e. minus the local slope of 

of the flame phase of such transfer function at fre- 

quencies close to ω 0 . 

−τω 0 nondimensional slope of the flame phase in the 

vicinity of the acoustic mode with frequency ω 0 

φ( ω) flame phase response, i.e. the argument of Q , as 

function of the frequency ω. We assume that it does 

not depend on the amplitude of oscillation A . This 

quantity depends on the geometry upstream of the 

flame and on the flame response. 

φ0 flame phase at the acoustic frequency ω = ω 0 , i.e. 

φ( ω 0 ) 

φqp phase between q and p of a thermoacoustic mode 

at frequency ω B , i.e. φ( ω B ) 

ϕj slowly varying phase of the j -th azimuthal mode, 

j = 1 , 2 

ϕ slowly varying phase difference ϕ 1 − ϕ 2 of the two 

azimuthal mode 

χ radial and axial shape of the azimuthal modes, χ ( r, 

z ) 

ω angular frequency, variable 

ω 0 angular acoustic frequency of oscillation when the 

flame and the damping are virtually shut off and 

the system becomes conservative. This is the fre- 

quency of oscillation of the acoustic mode with- 

out being excited by the flame and without being 

damped by the acoustic losses 

ω B angular thermoacoustic frequency of the system if 

the flame response gain β is virtually decreased un- 

til the system is neutrally stable, i.e. the growth rate 

σ becomes zero, solution of (27) . We prove that ω B 

is also the frequency of the limit-cycle solution if 

the flame phase does not depend on the amplitude 

and the damping losses are linear, as is the case in 

this work 

ω LC angular frequency of oscillation at the limit cycle, 

proved to match ω B 

� domain of the combustor 

p(t) = A cos (ωt) in (1) : 

1 

T 

∫ t+ T 

t 

Q [ A cos (ωt)] A cos (ωt) dt > acoustic losses (2) 

We now define the describing function Q ( A, ω) of an operator Q of 

a sinusoidal input at frequency ω and with an amplitude A simi- 

larly to [4] : 

Q(A , ω ) ≡ 1 

A 

2 

T 

∫ t+ T 

t 

Q [ A cos (ω t)] e −iωt dt (3) 

We multiply and divide the left hand side of (2) by 2/ A 

2 , and by 

substituting the real part of (3) we obtain 

1 

2 

Re [ Q(A , ω )] A 

2 > acoustic losses (4) 

On the left hand side, we recover the typical structure of a con- 

servative potential; for example, for a linear spring with constant 

k loaded with a steady displacement A , the energy is kA 

2 /2, where 

the describing function is real valued, does not depend on the am- 

plitude A because the spring is linear and matches the constant k . 

We can rewrite the complex valued describing function in terms of 

its real valued, non-negative gain G and real valued phase response 

φ: 

Q(A , ω ) = G (A , ω ) e iφ(A ,ω ) (5) 

In the following we will refer for brevity to G as flame gain and to 

φ as flame phase. By substituting (5) in (1) we obtain: 

1 

2 

G (A , ω ) cos ( φ(A , ω ) ) A 

2 > acoustic losses (6) 

Eq. (6) allows the same interpretation of (1) , but in terms of the 

flame gain G and flame phase φ of the describing function Q . We 

then review known results discussed first by [1] . We observe that 

the acoustic loss term on the right hand side of (6) is positive, so 

that in order for (4) to hold we require that cos ( φ) > 0, i.e. that 

−π/ 2 < φ(A , ω ) < π/ 2 . Once this first necessary condition is sat- 

isfied, there exists a threshold value of the gain above which (4) is 

verified and a thermoacoustic oscillation ensues. 

This perspective in terms of an acoustic energy balance cor- 

rectly captures the dominant feature of the thermoacoustic prob- 

lem as a self excited closed loop system, which in an enclosed 

cavity has a set of countable thermoacoustic eigenmodes. We can 

interpret the Rayleigh criterion at the frequency ω of the nonlin- 

early saturated eigenmode at a limit cycle, i.e. at the dominant fre- 

quency peak of a thermoacoustically unstable experiment. We dis- 

tinguish ω from the eigenfrequency ω 0 of the acoustic mode of the 

combustor obtained when a passive flame is considered. We now 

consider three other scenarios, where the Rayleigh criterion does 

not allow us to conclude much. 



Download English Version:

https://daneshyari.com/en/article/4764503

Download Persian Version:

https://daneshyari.com/article/4764503

Daneshyari.com

https://daneshyari.com/en/article/4764503
https://daneshyari.com/article/4764503
https://daneshyari.com

