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a  b  s  t  r  a  c  t

In this  paper,  we  present  a method  for control  of  input-constrained  nonlinear  systems  that  offers  guar-
anteed  stabilization  from  the  entire  null  controllable  region  (NCR).  The  controller  achieves  stabilization
by  using  a  constrained  control  Lyapunov  function  (CCLF)  based  on  this  NCR.  Prior  to  online  implementa-
tion,  the  level  sets  the  CCLF  are  constructed  using  an iterative  algorithm.  The  algorithm  works  by  using
an  invariance  principle  to expand  an initial  quadratic  Lyapunov  function-based  region  of  attraction.  The
level  sets  of  this  CCLF  are then  utilized  in  the  control  calculations,  and  in  particular,  an  MPC  is formulated
that  requires  the  system  to go  to lower  level  sets  of  the  CCLF.  The  proposed  MPC  thus  achieves  stabiliza-
tion  from  the  entire  NCR.  The  proposed  approach  is  first  corroborated  against  existing  results  for  linear
systems  using  two-  and  three-dimensional  linear  systems  examples.  Subsequently,  the  implementation
is  shown  for two  and  three  dimensional  nonlinear  systems.

©  2017  Published  by Elsevier  Ltd.

1. Introduction

All real control systems possess physical constraints on the mag-
nitude of their manipulated inputs. For example, control elements
such as valves and variable-speed motors have limited open area
and torque. Thus, a long-standing problem in nonlinear control the-
ory has been to determine the set of initial conditions from which
an input-constrained nonlinear system can be stabilized. Existing
results on determining this so-called null controllable region (NCR)
have focused on various special instances of the problem. In one
set of results, unconstrained linear systems are considered. It has
been shown that controllability to the origin is equivalent to show-
ing that the controllability Grammian matrix has full rank (see e.g.
Chen, 1999). Along the same lines, unconstrained control-affine
nonlinear systems require the invertibility of a state-dependent
matrix results in stabilization from the entire state space (Khalil,
2002).

However, the above techniques do not address controllability
in the input-constrained setting. One of the early results in this
direction is Teel (2002) where semi-stable systems, for which the
NCR is unbounded, are considered. Conversely, in Hu et al. (2002),
the null controllable region is determined for input-constrained
unstable linear systems. In a recent set of results, controllers were
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designed that utilized the explicit NCR characterization in design-
ing the control law, and possessed the NCR as the closed-loop
region of attraction (Mahmood and Mhaskar, 2008, 2014). This was
achieved via utilizing the NCR to construct the unique constrained
control Lyapunov function (CCLF), and to in turn utilize it in the
control design.

For nonlinear systems, while the determination of the NCR has
remained an open problem, a powerful approach that has been
used to estimate a controller’s stability region is through control
Lyapunov functions. Thus, control designs have been proposed for
which the closed-loop stability region can be explicitly computed
and such control designs range from purely algebraic control laws
(Sontag, 1989) to those that employ optimization tools to compute
the control law (Mhaskar et al., 2006; Mayne et al., 2000). However,
it is not clear which Lyapunov function one should use to enable a
large stability region. More specifically, there are no current meth-
ods to determine which particular choice of the Lyapunov function
will give rise to a controller with a region of attraction equal to the
NCR.

It is known that the problem of determining the boundary of
the NCR is equivalent to the solution of the minimum-time control
problem (Lewis, 2006); however, this formulation is not amenable
to direct solution. Clearly, solving this problem at each individual
state would be computationally intractable, whereas approaches
that make use of the nonlinear Hamilton–Jacobi–Bellman PDE suf-
fer from a lack of appropriate and tractable boundary conditions
(Bardi and Falcone, 1990; Bobrow et al., 1985; Bressan, 2010). Fur-
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ther still, while the minimum-time function has been recognized as
a Lyapunov function, it is often difficult to utilize its discontinuous
solutions in a practical control design.

In yet another consideration, stabilization is sometimes desired
in systems for which sustained implementation of large inputs is
impossible or undesirable in practice. In other cases, when oper-
ating close to the boundary of the NCR, disturbances can pose a
risk of catastrophic destabilization (Mahmood and Mhaskar, 2014).
Hence, it is valuable to use a controller which deliberately steers
away from the NCR.

Motivated by the above considerations, this paper presents
the construction of a Lyapunov function, and subsequently a con-
trol design that incorporates this Lyapunov function, in which the
closed-loop region of attraction is exactly equal to the null con-
trollable region. The special and unique feature of this particular
Lyapunov function is that anywhere the system is stabilizable, the
control design is guaranteed to be compute the set of control moves
to achieve stabilization. The manuscript is organized as follows: in
Section 2 preliminary definitions are presented, whereas the main
results form Section 3. The CCLF definition will be introduced first,
then our algorithm for determining the NCR, followed by our con-
trol design. In Section 4, the algorithms are demonstrated using
several simulation examples.

2. Preliminaries

We  consider nonlinear process systems defined by the four-
tuple � = {�,  T,  F,  U}, which consists of (in the style of Lewis
(2006)) the state-space � = R

n, the time interval T ∈ R  (here T =
[0, ∞)), the dynamics F : � × T × U �→ � given by:

ẋ = F(x, u) (1)

and the control set U = [−1, 1] ⊂ R  so that u(t) : T �→ U (Lewis,
2006). We  assume that x = 0 is an isolated equilibrium point of the
unforced system, i.e. F(0, 0) = 0 and that F(·) is globally Lipschitz
continuous in all its arguments.

Let S and Q be sets. Then by S◦, ∂S, S \ Q, we mean the interior,
boundary and relative complement of S, respectively. Further, let
x(t;t0, x0, u) be the result of integrating a trajectory over time t ∈ [t0,
t] under control law u(t) from x0 = x(t0).

By the null controllable region C (NCR) of system �,  we  mean
the following set (Hu et al., 2002):

C = {x0 : ∃u(t) ∈ U,  T > t0 s.t. x(T; t0, x0, u) = 0} (2)

Informally, C contains all the states that can be controlled to the
origin with admissible controls. Importantly, the set C is the largest
positively invariant set containing trajectories of (1) in reverse-
time with the origin as the initial state. Thus, if x(t0 + t) ∈ C and t > 0,
then so is x(t0). Conversely, if x(t0) /∈ C,  then neither is x(t0 + t) for all
t > 0. We will exploit this simple property in our NCR construction
algorithm.

A function V(x) : R
n �→ R  is a control Lyapunov function if (i)

V(0) = 0, and elsewhere, V(x) > 0, and (ii) there exists an admissible
input function u = �(x) such that V̇(x) = ∂V

∂x
F(x, �(x)) is strictly neg-

ative on some ball surrounding the origin. If (ii) holds for all x ∈ C,
then we say the Lyapunov function V(x) is a constrained control
Lyapunov function (CCLF) (Mahmood and Mhaskar, 2014).

3. Results

3.1. Definition of the CCLF

There is more than one way to determine a CCLF. One example of
a CCLF determination is to consider the time-optimal control prob-
lem. The set of states for which the problem with a particular value

of the input yields a finite objective function yields a level set of
the Lyapunov function. Below we utilize an alternate construction
procedure for the determination of the level sets of this CCLF.

Consider the NCR for system � and denote �(Uk) = {�, T,  F, Uk}.
Then, naturally C(Uk) is the NCR (as in (2)) associated with �(Uk).
Clearly, if U2 ⊂ U1, then C2 ⊆ C1, but this is one of the few com-
parison properties of C(U)  that hold in the nonlinear setting (c.f.
Mahmood and Mhaskar, 2014, where linearity is exploited).

By modulating the size of the control set U,  we  can use the result-
ing NCR C(U)  to generate the CCLF. In particular, lets consider only
the family of intervals as our control sets; namely, let I(�) = [−�, �]
and, further, let �(C(I(�))) = �.

Thus, we  suggest this constrained control Lyapunov function:

V(x) = sup{� : x ∈ C(I(�))} (3)

We can deduce the following simple fact about V(x):

Proposition 1. Suppose x0 ∈ C◦. Then, for some there must be a
control law u(t) = �(x(t)) and time T such that V(x(T)) − V(x0) < 0.
Furthermore, lim

t→∞
x(t;x0, �(x)) = 0.

Proof: The existence of �(x) is implied by the construction of the
NCR (2); that is, there is always an input sequence to drive the states
x ∈ C to the origin, and hence also to smaller level sets of V(x).�

The interpretation of the level set V(x) = c is that they are bound-
aries of regions in which the maximum control effort required is c,
so that also V(x) = sup

t>0
|�(x(t))|. We  remark that when F(·) is con-

vex, V(x) is differentiable. However, if � is a general non-linear
system, then levels {x : V(x) = c} and {x : V(x) = c + ε}, ε a small pos-
itive number, cannot be made arbitrarily close for every choice of
c. In this sense, the scalar field V(x) contains discontinuities.

3.2. An algorithm to determine C

The above-stated CCLF can only be utilized in control design
after C is explicitly known. Thus, we now describe a construction
algorithm that uses the positive invariance property of C.  An impor-
tant assumption of this algorithm is that the NCR has a boundary
consisting of states with strictly finite magnitudes (see Remark 5).

Step 1: We first construct an initial region of attraction using
an arbitrary control Lyapunov function such as Vi(x) =

∑n
1x

2
i

. As in
Khalil (2002), we  first establish the sets 	 = {x : V̇i(x) + 
Vi(x) < 0}
and V(c) = {x : Vi(x) ≤ c}. Then we  define its region of attraction as
just:

�  = sup
c

{x ∈ V(c) : V(c) ⊆ 	}  (4)

In step one, we finitely discretize the domain into a grid R ⊂ R
n. Let

Ry ⊂ R
a be a grid if it is a collection of points y ∈ R

a that all admit the
re-parameterization y = hyıy, where hy > 0 is a scalar constant, the
grid spacing, and ıy ∈ N

a is a vector of natural numbers. We  say ı is
the index coordinates of y if it is the unique ıy such that y = hyıy + ry,
where 0 ≤ ry < h. Further, we define a cell associated with index ı
to be the space hı ≤ x − xgrid,0 ≤ h(ı + 1), xgrid,0 a chosen reference
point, whereas the cell vertices are the corresponding indices.

We populate the grid C0, the initial approximation of the NCR,
with the index locations R ∩�, and the grid B0, the initial approx-
imation of ∂C (the boundary of the NCR) with the index locations
R ∩ ∂�.

Remark 1. In practice, the discrete approximation of B0 should
include some cells in �

◦ that are close to, but not on, ∂�,  resulting in
a ‘donut’ of cells so that there are no ‘gaps’ caused by the discretiza-
tion of the state space into x ∈ R. There is no harm to overestimating
B0 this way.
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