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a  b  s  t  r  a  c  t

Life  Cycle  Assessment  (LCA)  has recently  gained  wide  acceptance  in  the  environmental  impact  evalu-
ation  of  chemicals.  Unfortunately,  LCA  studies  require  large  amounts  of  data  that  are  hard  to gather
in  practice,  a critical  limitation  when  assessing  the  processes  and  value  chains  present  in  the  chemical
industry.  We  here  develop  an  approach  that predicts  the  cradle-to-gate  life  cycle  production  impact  of
organic  chemicals  from  attributes  related  to their  molecular  structure  and  thermodynamic  properties.
This method  is based  on  a mixed-integer  programming  (MIP)  optimisation  framework  that  systemati-
cally  constructs  short-cut  predictive  models  of life  cycle  impact.  On applying  our approach  to  a data  set
containing  88  chemicals,  17  molecular  descriptors  and  15  thermodynamic  properties,  we estimate  with
enough  accuracy  (for  the  purposes  of  a standard  LCA)  several  impact  categories  widely  applied  in  LCA
studies,  including  the cumulative  energy  demand,  global  warming  potential  and  Eco-indicator  99.  Our
framework  ultimately  leads  to linear  models  that  can  be easily  integrated  into  existing  modelling  and
optimisation  software,  thereby  facilitating  the  design  of more  sustainable  processes.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The chemical industry is at present striving to decrease its
environmental footprint in the transition towards a more sustain-
able manufacturing sector. In this context, systematic methods are
required to assist in the environmental assessment and optimisa-
tion of chemicals, identification of critical hotspots across products’
supply chains and definition of guidelines to effectively retrofit pro-
cesses so that they adhere to sustainability principles. The amount
of new chemicals produced annually has exponentially increased in
the last decades. The database CAS registry (http://www.cas.org/,
2016) from Chemical Abstracts Service, a division of the Ameri-
can Chemical Society devoted to authoritatively collect disclosed
chemical substance information, contains at present more than 120
million organic and inorganic substances and 66 million sequences,
with approximately 15,000 new chemicals being added each day.
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Hence, an enormous amount of chemical species exists and for
many of them the corresponding chemical hazards and potential
environmental impacts are not fully understood or characterised.
This information, however, is critical for the proper evaluation
of their wider sustainability impacts and future market feasibil-
ity.

Under the above scenario, the recent trend towards the develop-
ment of more sustainable products has led to a plethora of environ-
mental assessment tools(Constable et al., 2002; Tobiszewsk, 2016).
Among them, Life Cycle Assessment (LCA) (Guinée et al., 1993a,b;
Sheldon, 2015) has become (arguably) the prevalent approach to
quantify the environmental burdens of products from cradle to
grave, finding applications in many areas, including the holistic
assessment of the environmental footprint of chemicals consid-
ering all the stages in their life cycle (Anastas and Lankey, 2000;
Azapagic and Clift, 1999; Bojarski et al., 2009; Burgess and Brennan,
2001; Cespi et al., 2015; Gerber et al., 2011; Jimenez-Gonzalez
and Overcash, 2014; Khoo et al., 2016; Kralisch et al., 2014; Wen
and Shonnard, 2003). Furthermore, the combined use of LCA and
optimization has gained increasing popularity in process systems
engineering and is now being used to tackle a wide variety of prob-
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Nomenclature

Acronyms
LCA Life cycle assessment
MIP  Mixed-integer programming
SLCA Streamlined life cycle assessment
MLR  Multi-linear regression
ANN Artificial neural network
CED Cumulative energy demand
GWP  Global warming potential
COD Chemical oxygen demand
BOD5 Biological oxygen demand
TOC Total organic carbon
EI99 Total Eco-indicator 99 total
EI99 HH Eco-indicator 99 human health
EI99 EQ Eco-indicator 99 ecosystem quality
EI99 Res Eco-indicator 99 resources
LOOCV Leave one out cross validation
MIQCP Mixed-integer quadratically constrained program-

ming
MINLP Mixed-integer non-linear programming
ARE Average relative error
MD  Molecular descriptors
TP Thermodynamic properties

Indices
i Chemical
j Chemical attribute

Sets
I  Set of chemicals
J  Set of chemical attributes

Parameters
xij Normalised value of attribute j in chemical i
yo i Normalised value of the impact category being pre-

dicted in chemical i
bj Upper bound on the regression coefficient bj
bj Lower bound on the regression coefficient bj
k Number of attributes to consider in the regression

Variables
a Constant regression coefficient
bj Regression coefficient for attribute j
zj Binary variable that equals one if attribute j is used

in the regression and zero otherwise
RSS Sum of squared residuals
AIC Akaike information criterion

lems (Azapagic, 1999; Galán-Martín et al., 2016; Guillén-Gosálbez
and Grossmann, 2009; Mele et al., 2011; Pieragostini et al., 2012;
You and Wang, 2011).

Unfortunately, LCA requires large amounts of data from several
echelons in the product’s supply chain, which are often owned
by different companies that might be reluctant to share this
environmental information and/or might even lack the necessary
measurements. This limitation is particularly critical in the chemi-
cal industry, where complex process networks operate exchanging
energy, mass and water and consuming a wide variety of interme-
diate products and feedstocks.

LCA calculations can be simplified via Streamlined LCA (SLCA)
(Shatkin and Larsen, 2011; Todd and Curran, 1999), whose goal
is to reduce the upstream and downstream information required
in a standard LCA by using proxy data, qualitative models and/or

regression equations (Hunt et al., 1998). To increase their accuracy,
these methods must be tailored to a given sector, ensuring that
the simplifications and assumptions made hold in that particular
context. Specific SLCA methods have been developed for a wide
range of systems, such as buildings (Malmqvist et al., 2011; Yeo
et al., 2016; Zabalza Bribián et al., 2009), water treatment plants
(Quirante and Caballero, 2016; Schulz et al., 2012), power plants
(Moreau et al., 2012), oil refineries (Weston et al., 2011), general
chemical processes (Eckelman, 2016; Guillen-Gosalbez et al., 2007;
Hugo et al., 2004; Karka et al., 2014; Marvuglia et al., 2015; Tula
et al., 2017; Wernet et al., 2009, 2008) and other manufacturing
facilities (Kaebemick et al., 2003).

In a seminal work, Wernet et al. (2008) proposed a method to
estimate the life cycle impact of several organic chemicals from spe-
cific molecular descriptors including the molecular weight and the
number of several functional groups (e.g. hydroxyl groups, chlorine
atoms, etc.). Following this approach, the authors applied Multi-
Linear Regression (MLR) and Artificial Neural Networks (ANN)
to a data set containing 103 chemicals in order to predict sev-
eral impact categories (i.e. LCA metrics), including the Cumulative
Energy Demand (CED), a widely used LCA metric previously found
to correlate with several life cycle impacts (Huijbregts et al., 2010).
In a follow-up work, Wernet et al. (2009) applied the ANN model
to a larger data set of chemicals. These works designate the state-
of-the-art with respect to publicly available model predictive life
cycle impact assessment using molecular information. Life cycle
inventory estimation methods have also been presented by Glax-
oSmithKline (Curzons et al., 2007; Jiménez-González et al., 2004),
however the associated data and model transparency is very low
due to confidentiality reasons.

Here we develop an SLCA approach for simplifying the envi-
ronmental impact assessment of chemicals that makes use of
mathematical techniques to predict their life cycle environmen-
tal footprint from information readily available in practice. Our
computational framework shows three main novelties compared
to existing approaches: (i) it includes thermodynamic properties
in the predictive models, which greatly improve the quality of
the estimate when compared to predictions based exclusively on
molecular descriptors (as was the case in Wernet et al., 2008); (ii)
it identifies in an automatic manner chemical attributes that lead
to better predictions and low risk of over-fitting; and (iii) it relies
on simple linear models that can be easily integrated into soft-
ware packages for process and molecular simulation. Our approach
is based on MIP  techniques that construct in an automatic man-
ner linear regression models of environmental impact using binary
variables to select chemical attributes and continuous variables to
represent regression coefficients. This MIP  approach, which can be
easily extended to construct Quantitative Structure-Activity Rela-
tionships (QSAR) (Birkved and Heijungs, 2011; Eklund et al., 2012;
Pirhadi et al., 2015; Yang et al., 2011) models for other environmen-
tal, health and safety properties, opens up new research avenues
for the incorporation of sustainability principles in the design of
greener chemical products and processes (e.g. Bio-chemicals and
Bio-fuels (Karka et al., 2014)).

The paper is organized as follows: First we specify the prob-
lem to solve together with the underlying assumptions and the
methodology proposed to solve it. Then, we present in detail the
modelling approach and solution procedure. Finally, we  demon-
strate the capabilities of the proposed methodology using the same
dataset presented by Wernet et al. (2008).

2. Problem statement

Our hypothesis is that thermodynamic properties contain a
plethora of information concerning the energy, water and feedstock
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