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a  b  s  t  r  a  c  t

CFD-based  optimization  provides  an  efficient  tool  to improve  systems  in which  conversion  processes
depend  on  a strong  interaction  between  flow  field  and  chemical  reactions.  The  present  work  devel-
ops  an  improved  multi-parameter  and  multi-objective  optimization  concept  for  reactive  flow  systems
and  demonstrates  this  concept  for a new  quench  reactor.  Response  surface  methods  (metamodels)  are
used within  the  metamodel-based  optimization  process  to  accelerate  the optimization  rapidly.  Different
metamodels  such  as  polynomials,  K-nearest,  radial  basis  functions,  anisotropic  Kriging,  smoothing  spline
analysis  of  variance,  and  artificial  neural  networks  are  applied  and  carefully  analyzed.  It  can  be  shown
that radial  basis  function  metamodels  in combination  with  a certain  number  of CFD  calculations  provide
a  robust  and  efficient  optimization  scheme.  The  computational  effort  can  be reduced  by  a factor  of  17,
which  provides  a reliable  basis  to  optimize  more  complex  reactive  flow  systems,  e.g.  the  high pressure
partial  oxidation  of  natural  gas  or crude  oil.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Optimization of reactive flow systems, e.g. coal and biomass
combustion, gasification or partial oxidation, is usually a multi-
parameter problem, while geometry configurations (e.g. reactor
dimensions, burner dimensions) and operating conditions (e.g.
fuel mass flow, reactor temperature, cooling capability) mainly
determine the process efficiency and profitability. Indicators are
fuel conversion rate and syngas quality, respectively. The complex
interaction of turbulent mixing and several homogeneous reactions
requires the use of CFD, since simplified 0D and 1D approaches can-
not capture the underlying phenomena. For reactive flow systems,
the computational effort can take up to several weeks for a single
CFD calculation (Förster et al., 2017), which limits the optimiza-
tion based on CFD calculations, as several hundred calculations are
necessary for reliable multi-parameter optimization.

One possible solution is the application of so-called meta-
models (MMs) or response surface methods (RSMs) as surrogates
for computationally expensive CFD calculations (Wang and Shan,
2007). MMs  use fast-performing mathematical functions, which
are trained with a given data base, e.g. experiments or CFD cal-
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culations. By partly replacing CFD calculations with MMs  the
computational effort can be reduced, allowing the optimization
of complex systems. Several MM types applying different kinds
of mathematical formulations are present in the literature. MMs
were first developed by Box and Wilson (1951). They modeled a
response variable for trend analysis using a first-order polynomial
approach. Another interpolating MM type is the K-nearest neigh-
bor method. Only the first K design points close to the evaluated
point are considered for the estimation. The response function is
modeled by the weighted average of K-nearest points. One more
predictive, but computationally expensive interpolating method is
radial basis functions. Common radial basis functions are Gaussian,
multiquadratic, inverse multiquadratics and polyharmonic splines
(Cavazzuti, 2013). In general, a sum of N radial basis functions is
considered an approximated response function. Anisotropic Krig-
ing is a refined version of the well-known Kriging method (Krige,
1951). The response variable is estimated by a linear combination of
the training points, each point being weighted. The weights are cor-
related by a covariance function, the variogram (Cavazzuti, 2013).
Smoothing spline analysis of variance is a multivariate method,
which is characterized by function decomposition similar to the
basic form (Gu, 2002) and can also be used for metamodeling. Artifi-
cial neural networks approximate the response variable, mimicking
the central nervous system. Different methods of applying neural
networks to MMs  are possible. An overview of the advantages and
disadvantages of several types can be found in Cavazzuti (2013).
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CFD-based optimization has drawn attention in several research
fields, e.g. turbo-jet engines (Atashkari et al., 2005), cyclone sep-
arators (Elsayed and Lacor, 2010, 2012; Safikhani et al., 2011),
wind turbines (Chehouri et al., 2015; Wang et al., 2011) and heat
exchangers (Arora et al., 2016; Wen  et al., 2016). In these works,
mainly non-reactive flows are considered. In the last years, sev-
eral engineering research focused on the process optimization by a
combined use of MM and CFD. For instance, Duchaine et al. (2009)
optimized an aeronautical combustion chamber applying a Kriging
MM, design of experiments techniques and CFD. An optimization
of a gas cyclone separator was performed by Elsayed and Lacor
(2012). Safikhani et al. (2011) used neural networks trained by CFD
results for Pareto optimization of cyclone separators. Khatir et al.
(2013) used MM-based optimization combined with CFD calcula-
tion to improve the thermal efficiency of an industrial bread-baking
process. Lang et al. (2011) optimized an IGCC process by combining
CFD simulations, MMs  and flowsheet modeling. Umer et al. (2014)
investigated CFD-based optimization for oblique tool steel turning
operations.

Despite these works, a comprehensive analysis of favorable MM
type and the number of necessary CFD calculations for sufficient
MM training is not available (Wang and Shan, 2007). For that rea-
son, the current work considers a new quench reactor concept
(Boblenz et al., 2015; Meyer et al., 2015; Uebel et al., 2016a) as
an example and analyses in detail the performance of several MM-
based optimization strategies. An improved optimization concept
based on a determined number of CFD calculations and MMs  is
developed aiming for the sufficient optimization of complex reac-
tive systems.

The present work is structured as follows. First, the quench reac-
tor will be introduced briefly and a first CFD-based optimization
concept will be described (Uebel et al., 2016b). Second, an improved
accelerated optimization strategy will be investigated. Therefore,
the optimization behavior of two well-known genetic algorithms,
MOGA-II and NSGA-II, will be analyzed. Next, several MM types
will be compared to the CFD results. The best-performing MM will
be chosen for MM-based optimization and the results are com-
pared to CFD-based optimization. By replacing time-consuming
CFD calculations with fast MM predictions, the optimization pro-
cess can be rapidly accelerated. A FAST algorithm combining CFD
and MMs  within the generation loop will be introduced and dis-
cussed carefully in terms of the reliability of optimization results
and the accuracy of the MM prediction.

2. CFD-based optimization of a new quench concept

A quench conversion reactor concept developed at TU
Bergakademie Freiberg (Boblenz et al., 2015; Meyer et al., 2015)
was investigated by Uebel et al. (2016a,b). The basic improvement
to this concept compared to established quench concepts is an addi-
tional conversion of the syngas using the homogeneous water-gas
shift reaction. Injecting steam instead of water through nozzles
close to the syngas inlet forms a defined mixing and reaction zone,
where the conversion of CO to H2 occurs via the water-gas shift
reaction. A simplified scheme of the quench conversion concept is
shown in Fig. 1. Interested readers are referred to, and Uebel et al.
(2016a,b) for details.

A validated time-reduced CFD setup introduced by Uebel et al.
(2016b) is applied. A 2D axisymmetric grid with approx. 14500
cells is solved in ANSYS Fluent

®
14.5. The k-ω-SST turbulence

model and the Eddy Dissipation Concept model for the turbulence-
chemistry interaction with in-situ adaptive tabulation are used
(Schulze et al., 2016; Magnussen and Hjertager, 1981; Kumar and
Ghoniem, 2012b,a; Bader et al., 2016; Fluent; Rehm et al., 2009). The
Discrete Ordinates radiation model is consulted, combined with

the domain-based Weighted-Sum-of-Grey-Gas adsorption coeffi-
cient model. A reduced mechanism based on the detailed GRI 3.0
mechanism (Smith et al., 1999) is implemented which considers 8
species and 7 reactions. A single CFD calculation requires between
0.75 and 3 hours, depending on the number of cores used (tested
on a 20-core Intel Xeon E5 V2 2.8 GHz).

To further develop the quench conversion concept, a multi-
objective Pareto optimization was  introduced by Uebel et al.
(2016b) using the commercial optimization tool modeFRONTIER

®

by ESTECO
®

. Two  geometrical parameters (height, h, and diameter,
d, of the quench chamber, see Fig. 1) and two  process param-
eters (amount of steam from nozzle and wall cooling capacity)
were varied in specific ranges and steps. Two competing objec-
tive functions were optimized using the multi-objective genetic
algorithm MOGA-II developed by Poloni (1995), while the H2/CO
ratio at the outlet was maximized and the temperature at the out-
let was minimized. As an initial set, 20 SOBOL distributed designs
were calculated, defining the generation size. Overall, the Pareto
optimization resulted in 1000 CFD calculations. Each design eval-
uation consists of automatic grid generation via ICEM CFD

®
and

automated CFD calculation using ANSYS Fluent 14.5. Due to the
parallelization of design evaluations in modeFRONTIER

®
, up to 20

design configurations can be evaluated at the same time using sin-
gle core calculation. Therefore, approx. 700–1100 CFD calculations
(or design evaluations) per week are feasible using a 20-core cluster
(optimal computational time: one to four processors per calcula-
tion). Fig. 1 shows an example of the Pareto optimization results
(Uebel et al., 2016b).

3. A rapidly accelerated optimization

While several time-consuming CFD calculations are necessary,
this strategy is unsuitable for optimization of complex reactive
systems. As already mentioned, MMs  are used for predictive opti-
mization in the literature. Most MM-based optimization strategies
apply DoE (Design of Experiments) methods, e.g. SOBOL, to gen-
erate sufficiently well-distributed data for MM training, while this
data are evaluated by CFD (Validi et al., 2015; Khatir et al., 2013;
Elsayed and Lacor, 2012; Safikhani et al., 2011). Only a few CFD
results need to be calculated so the computational effort is moder-
ate. An approximated Pareto front is achieved. However, the MM
accuracy depends strongly on the DoE method and the number of
CFD data used for MM training.

In the present work, a targeted optimization strategy is devel-
oped. In difference to the literature, the proposed strategy is
compared to comprehensive CFD-based optimization results. In
consequence, reliable statements can be given in terms of (a) the
best-performing optimization algorithm, (b) the suitable MM types,
(c) the necessary quality and quantity of the training data, (d)
the accuracy of MM-based optimization results compared to CFD-
based results, and (e) possible ways to increase the accuracy of
the predicted optimization results leading to an improved Pareto
front. Table 1 summarizes the available optimization strategies in
the literature and the proposed concept.

The following steps are considered to accelerate the optimiza-
tion process in the present work:

1. Simplify the CFD setup to decrease the computational effort of a
single simulation.

2. Prove the reliability of optimization results and increase the con-
vergence speed to Pareto-optimal solutions.

3. Replace time-consuming CFD simulations with fast MMs.  For
this, analyze the optimal MM type and the necessary size of data
points (CFD simulations) for a reliable training basis. Perform a
MM-based optimization.
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