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a  b  s  t  r  a  c  t

In this  article,  we extensively  evaluate  the  smart  sampling  algorithm  (SSA)  developed  by Garud  et al.
(2017a)  for  constructing  multidimensional  surrogate  models.  Our  numerical  evaluation  shows  that  SSA
outperforms  Sobol  sampling  (QS)  for polynomial  and  kriging  surrogates  on  a diverse  test  bed  of 13  func-
tions.  Furthermore,  we compare  the  robustness  of SSA  against  QS  by evaluating  them  over  ranges  of
domain  dimensions  and  edge  length/s.  SSA  shows  consistently  better  performance  than  QS making  it
viable  for  a broad  spectrum  of applications.  Besides  this,  we  show  that  SSA  performs  very  well  compared
to  the  existing  adaptive  techniques,  especially  for  the  high  dimensional  case.  Finally,  we  demonstrate
the  practicality  of  SSA  by employing  it for three  case studies.  Overall,  SSA  is  a promising  approach  for
constructing  multidimensional  surrogates  at significantly  reduced  computational  cost.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Process simulators are commonly used to model, study, and ana-
lyze complex nonlinear physicochemical systems. However, such
simulations are generally computationally intensive, thus, pro-
hibiting their repeated evaluations in a typical analysis procedure.
Moreover, the custom-made process simulators are often black-
box in nature. Hence, no system information is available to the users
without evaluating an instance of this costly simulation. On these
accounts, it is beneficial to convert such high-fidelity simulations
into computationally inexpensive surrogate models that capture
essential features with reasonable numerical accuracy. Surrogate
modeling, also known as metamodeling or response surface model,
is a technique to generate a mathematical or numerical represen-
tation of a complex system based on some sampled input-output
data. In a philosophical discussion on the future of computational
modeling, Kraft and Mosbach (2010) highlight the importance of
approximation techniques and experimental designs (sampling
techniques) in tackling complex multi-scale systems. The quality
of any surrogate approximation depends on a sampling technique
used to generate the input-output data and a surrogate modeling
technique used to build the approximation. The literature (Shan and
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Wang, 2010) has several forms of surrogate models like polynomial
response surface model (PRSM), high dimensional model represen-
tation (HDMR), kriging, radial basis functions (RBFs), support vector
regression (SVR), artificial neural networks (ANNs), etc. Further-
more, many works (Henao and Maravelias, 2011, 2010; Caballero
and Grossmann, 2008) have employed these techniques in the con-
text of various physicochemical systems. Nonetheless, the current
work focuses on the critical evaluation of a smart and adaptive
sampling approach for multidimensional surrogate construction
paradigms.

Commonly used sampling techniques employ uniform, quasi-
random, or systematic distributions (Pronzato and Müller, 2012;
Koehler and Owen, 1996). Examples are factorial design or grid
sampling, random sampling, Latin hypercube sampling, orthogo-
nal arrays, Hammersley points, Sobol sampling (QS), etc. A recent
review by Garud et al. (2017b) classifies the literature on sam-
pling techniques into three major categories viz. static system-free,
static system-aided, and adaptive-hybrid. It discusses each of them
thoroughly and identifies their advantages and disadvantages. The
static techniques are often prone to the curse of dimensionality.
Moreover, they can result in under/oversampling and thus, result-
ing in poor system approximation (Garud et al., 2017a). In order to
tackle these issues, a new upcoming class of modern DoE (design
of experiments) called adaptive sampling (sequential sampling)
has gained attention from the research community over the past
few years. Adaptive sampling approach has two vital advantages
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Abbreviations

Abbreviations
ANN artificial neural network
CC clustering constraint
CCU carbon capture unit
CDM crowding distance metric
CSTR continuously stirred tank reactor
CV cross validation
CVE cross validation error
DEA diethanolamine
DF departure function
DoE design of experiments
DT Delaunay triangulation
EE expected error
HDMR high dimensional model representation
HM-CI Hessian matrix based curvature information
JK Jackknifing
LOLA local linear approximation
MD Mahalanobis distance
ME  maximum entropy
Mm maximin distance
MoDS model development suite
MSD  maximum scaled distance
MSE  maximum sampling error
NLP nonlinear programming problem
NN nearest neighbor
PE pooled error
PRSM polynomial response surface model
QS Sobol sampling
RBF radial basis function
RMSE root mean squared error
SSA smart sampling algorithm
SVR support vector regression
VT Voronoi tessellation
WCE  weighted cumulative error

Notation: Subscripts
b  index for the basis functions in kriging
m index for elements of response/output variables’

vector
n index for elements of design/input variables’ vector

Superscripts
i index for elements of set
j index for elements of set
k index for elements of set
t index for elements in set of sampling techniques
L lower bound
U upper bound

Parameters
K size of initial sample set
Kmax maximum number of sample points
N total number of input domain dimensions
M total number of output domain dimensions

Continuous variables
x vector of input/design variables
y vector of output/response variables

Symbols
dn edge length of nth dimension of D
d vector of edge lengths of D

over the static ones viz. low computational expense and better
approximation quality (Crombecq et al., 2011a). Typically, an adap-

D  domain
� departure function
ε minimum allowed distance between two points
E expectation
f computationally costly function
gb basis function in kriging
N  set of natural numbers
�k kriging order
�p PRSM order
Q test set size
Q test set
R  set of real numbers
S surrogate model form
T set of sampling techniques
VN(D) hyper-volume of D
X(K)
N N dimensional sample set of size K

Y(K)
M M dimensional response set of size K

Z random process

tive sampling technique starts with a small set of sample points,
and then adds points sequentially based on some user-defined cri-
terion. Such criterion involves an objective (sometimes referred
as a score) that aims to fill the domain (exploration) as well as
improve the overall surrogate quality (exploitation) (Garud et al.,
2017a; Crombecq et al., 2011a). We  summarize various adaptive
approaches from the literature and their vital characteristics like
the exploration and exploitation criteria, dependence on the sur-
rogate form, and the placement approach in Table 1. Although,
we only discuss the key works from the adaptive sampling liter-
ature, Garud et al. (2017b) has dedicated an entire section for their
discussion and the interested readers may  refer to it for further
details.

Jin et al. (2002) propose two approaches, namely the maximin
scaled distance (MSD) and the cross validation (CV). The former is a
modification of maximin distance based sampling that utilizes sys-
tem information by assigning weights to the important variables
while the latter uses CV error (Kohavi, 1995) to place new sample
points. The CV approach can be viewed as a maximum sampling
error approach with an additional feature of clustering constraint.
Crombecq et al. (2009, 2011a) propose a novel and generic score
based sequential strategy involving exploration and exploitation.
They use a combination of derivative-based local linear approx-
imations and Voronoi tessellations to place new sample points.
Although the LOLA-Voronoi strategy has shown some promising
results, it can be computationally intensive for large N. A recent
work by Eason and Cremaschi (2014) proposes an adaptive sam-
pling strategy for ANN surrogates. Instead of generating all sample
points in one shot, they choose them gradually based on some
score from randomly generated sample sets. The score considers
the normalized nearest neighbor distance of a potential point from
the current sample points and its normalized expected variance
evaluated using jackknifing (Efron, 1982). Though their selection
of sample points is systematic, it is still from randomly generated
points. Cozad et al. (2014, 2015) propose an adaptive sampling
for their surrogate modeling tool called ALAMO. They add sample
points one at a time to the initial sample set. For each new sample
point, they solve a derivative-free optimization problem to maxi-
mize the deviation of the surrogate from the real function. This can
obviously be compute-intensive, as it requires the evaluation of the
real function during optimization.

To this end, the adaptive sampling techniques in the literature
can be broadly classified as either score-based or optimization-
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