

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data demonstrating the role of peroxiredoxin 2 as important anti-oxidant system in lung homeostasis

Enrica Federti^a, Alessandro Matte^a, Alessandra Ghigo^b, Immacolata Andolfo^c, Cimino James^b, Angela Siciliano^a, Christophe Leboeuf^d, Anne Janin^{d,e,f}, Francesco Manna^c, Soo Young Choi^g, Achille Iolascon^c, Elisabetta Beneduce^a, Davide Melisi^a, Dae Won Kim^g, Sonia Levi^{h,i}, Lucia De Franceschi^{a,*}

^a Dept. of Medicine, University of Verona-AOUI Verona, Verona, Italy

^b Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy

^c CEINGE and Dept. of Biochemistry, University of Naples, Naples, Italy

^d Inserm, U1165, Paris F-75010, France

^e Université Paris 7- Denis Diderot, Paris, France

^f AP-HP, Hôpital Saint-Louis, F-75010 Paris, France

^g Institute of Bioscience and Biotechnology, Hallym University, Gangowo-do, Republic of Korea

^h Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy

ⁱ Vita-Salute San Raffaele University, Milano, Italy

ARTICLE INFO

Article history: Received 22 August 2017 Received in revised form 19 September 2017 Accepted 26 September 2017 Available online 30 September 2017

ABSTRACT

The data presented in this article are related to the research paper entitled "peroxiredoxin-2 plays a pivotal role as multimodal cytoprotector in the early phase of pulmonary hypertension" (Federti et al., 2017) [1]. Data show that the absence of peroxiredoxin-2 (Prx2) is associated with increased lung oxidation and pulmonary vascular endothelial dysfunction. Prx2^{-/-} mice displayed activation of the redox-sensitive transcriptional factors, NF-kB and Nrf2, and increased expression of cytoprotective system such as heme-oxygenase-1 (HO-1). We also noted increased expression of both markers of vascular activation and extracellular matrix remodeling. The administration of the recombinant fusion

DOI of original article: http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.004

* Corresponding author.

E-mail address: lucia.defranceschi@univr.it (L. De Franceschi).

http://dx.doi.org/10.1016/j.dib.2017.09.062

2352-3409/© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

protein PEP Prx2 reduced the activation of NF-kB and Nrf2 and was paralleled by a decrease in HO-1 and in vascular endothelial abnormal activation. Prolonged hypoxia was used to trigger pulmonary artery hypertension (PAH). $Prx2^{-/-}$ precociously developed PAH compared to wildtype animals.

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Health Sciences
More specific sub- ject area	Oxidation, peroxiredoxin-2 and pulmonary artery hypertension
Type of data	Text file, Figures
How data was acquired	Image Quant Las Mini 4000 Digital Imaging System (GE Healthcare Life Sciences). Densitometric analyses were performed using the ImageQuant TL software (GE Healthcare Life Sciences).
Data format	Raw analyzed
Experimental factors	C57B6/2J as wildtype mice and $Prx2^{-/-}$ mice
Experimental	Protein expression was analyzed by Western-blotting.
features	Oxidized proteins were revealed by the Oxyblot Protein Oxidation Detection
	Kit (EMD Millipore); MDA pulmonary levels were evaluated by Oxiselect
	MDA Immunoblot kit (GE Healthcare).
Data source	Dept. of Medicine, LURM, Policlinico GB Rossi, University of Verona and AOUI
location	Verona; Verona; Italy
Data accessibility	Data are available with this article

Value of the data

- Our data show that the absence of Prx2 is associated with increased lung oxidation and abnormal pulmonary vascular leakage.
- Treatment with fusion protein PEP Prx2 prevents the activation of redox related transcriptional factors and modulates anti-oxidant systems in both wildtype and Prx2^{-/-} mice.
- PEP Prx2 significantly reduces protein oxidation in lung from exposed to prolonged hypoxia used to trigger pulmonary artery hypertension.

1. Data

Data show increased lung oxidation (Fig. 1A) and abnormal pulmonary vascular leakage in the absence of Prx2 (Fig. 1B). This was paralleled by the activation of redox-sensitive transcriptional factors NF-kB and Nrf2 in lung from $Prx2^{-/-}$ compared to wildtype animals (Fig. 2A). Indeed, in $Prx2^{-/-}$ we observed (i) increased expression of heme-oxygenase 1 (HO-1), a Nrf2 related cytoprotective system; (ii) markers of vascular endothelial activation such as endothelin-1 (ET-1) and vascular cell adhesion molecule -1 (VCAM-1) and (iii) marker of extracellular matrix remodeling as the platelet growth factor- B (PDGF-B) that has been recently function linked to the development of pulmonary artery hypertension (Fig. 2B). To verify the role of Prx2 as important anti-oxidant system in pulmonary homeostasis, we administrated the recombinant fusion protein PEP Prx2 at the dosage of 3 mg/Kg/d ip or vehicle for 4 weeks [1–3]. As shown in Fig. 2, PEP Prx2 significantly reduced both

Download English Version:

https://daneshyari.com/en/article/4764915

Download Persian Version:

https://daneshyari.com/article/4764915

Daneshyari.com