Dyes and Pigments 148 (2018) 460-464

Contents lists available at ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

Synthesis and optical properties of P⁵⁺ co-doped Ba₃SiO₅:Eu²⁺ orange persistent phosphor

PIGMENTS

Seung Hee Choi^a, Seok Bin Kwon^a, Usama Bin Humayoun^a, Won Kyu Park^a, Kenji Toda^b, Masato Kakihana^c, Takaki Masaki^a, Woo Seok Yang^d, Young Hyun Song^{e,*}, Dae Ho Yoon^{a,*}

^a School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

^b Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

^c Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

^d Electronic Materials and Device Research Center, Korea Electronics Technology Institute, Seongnam 463-816, Republic of Korea

e Department of Nanotechnology and Advanced Material Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

A R T I C L E I N F O

Article history: Received 30 May 2017 Received in revised form 4 September 2017 Accepted 15 September 2017 Available online 18 September 2017

Keywords: Ba₃SiO₅:Eu²⁺ Persistent phosphor Trap center Co-doping

ABSTRACT

By co-doping the P^{5+} ions into Ba₃SiO₅:Eu²⁺, we synthesized new orange persistent phosphor using cellulose assisted liquid phase precursor (LPP) method. The emission spectra showed a typically broad orange emission band centered at 575 nm attributed to the $4f^{6}5d^{1} \rightarrow 4f^{7}$ transition of Eu²⁺ ions under 400 nm excitation source. The persistent luminescence property of Eu²⁺ doped Ba₃SiO₅ orange phosphor was enhanced by co-doping non-equivalent phosphorus ions into silicon sites. This enhancement can be explained by formation of the trapping center due to the charge compenstation. Consequently, the afterglow decay exhibited an orange emission for more than 5 min after irradiation at under 365 nm for 1 min.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Persistent luminescence is a phenomenon in which long durations of luminescence are exhibited after removing the excitation light sources [1,2]. Recently, persistent phosphors have been rapidly reported since the $SrAl_2O_4:Eu^{2+}$, Dy^{3+} green persistent phosphors were discovered in 1996 [3] and are being widely used not only in night-vision applications such as security signs, emergency route signs, traffic signage, dials, paints, and displays but also in temperature sensors and medical diagnostics [4,5].

Up to now, CaAl₂O₄:Eu²⁺, Nd³⁺ blue, and SrAl₂O₄:Eu²⁺, Dy³⁺ green phosphors have been commercialized because of their sufficiently strong and long-lasting persistent luminescence and their ability to be excited by room light as well as sunlight [1,2]. In contrast, other yellow to red color commercialized phosphors which are based on sulfides and oxysulfides host materials have

Corresponding authors.

poor chemical stability, low luminous intensity, and short life time [6,7]. In order to overcome these disadvantages, the design of oxide based persistent phosphors has been studied by co-doping non-equivalent ions and controlling the electron transfer via conduction band engineering [8–11]. Thus, it is also necessary to understand persistent luminescence mechanisms.

Persistent phosphors have two types of activate centers: emitting centers and trapping centers [2]. Emitting centers are capable of emitting radiation after being excited. Trapping centers usually store the excitation energy by trapping charge carriers and gradually releasing excitation energy to the emitting centers by thermal or other physical stimulations. Consequently, persistent luminescence results from the recombination of the stored energy and its intensity and lifetime depends on the trapping states (for example, trap type and distribution) [2]. Therefore, to promote persistent luminescence, it is important to select not only suitable emitting centers, but also proper trapping centers with the host lattice. In order to introduce appropriate trapping centers to the energy level structures, the general approach involves adding non-equivalent co-dopants as the trapping centers. For example, persistent luminescence was improved by co-doping In³⁺, Mg²⁺/Ti⁴⁺, and Tm³⁺ in

E-mail addresses: song.younghyun@sejong.ac.kr (Y.H. Song), dhyoon@skku.edu (D.H. Yoon).

place of Ti^{4+} in $CaTiO_3$: Pr^{3+} , Y^{3+} in Y_2O_2S : Eu^{3+} , and Ca^{2+} in $Ca_2Si_5N_8$: Eu^{2+} respectively [12–14]. Thus, we can improve the persistent luminescence properties by selecting the appropriate co-dopant.

In this study, P⁵⁺ ions were employed as the co-dopant and Ba₃SiO₅:Eu²⁺, P⁵⁺ phosphors were prepared using the cellulose assisted liquid phase precursor (LPP) method which is a simple liquid state synthesis method developed by our group. Eu²⁺ activated silicate phosphors are very widely researched phosphor hosts due to their broad excitation spectra and tendency of controlling the emission wavelength. The orange persistent luminescence, attributed to the $4f^{6}5d^{1} \rightarrow 4f^{7}$ transition of Eu²⁺ ions, was improved by co-doping P⁵⁺ ions in place of the Si⁴⁺ site in Ba₃SiO₅:Eu²⁺, P⁵⁺ phosphor. The different charged state between P⁵⁺ and Si⁴⁺ creates defects that act as the trap centers in the structure due to the charge compensation. The effects of the trap and activator concentration as well as the reduction temperature on the persistent luminescence properties are discussed.

2. Experimental

2.1. Preparation of the $Ba_3SiO_5:Eu^{2+}, P^{5+}$ orange phosphors

 Eu^{2+} and P^{5+} doped Ba₃SiO₅ orange phosphors were synthesized using the cellulose assisted liquid phase precursor (LPP) method. The procedure for the preparation of the raw material solution is as follows. Ba(CH₃COO)₂ (Sigma-Aldrich, 99%) and Eu₂O₃ (Sigma-Aldrich, 99.9%) were dissolved in deionized water and acetic acid, respectively. 85% phosphoric acid (Duksan) was diluted with deionized water to 30% solution. Then, each solution was stirred on a heating plate at 50 °C for 30 min. Propylene-glycolmodified silane (PGMS) was obtained by reacting tetraethoxysilane (TEOS) (Kanto Chemicals, 99.9%) with propylene glycol (Kanto Chemicals, 99.9%) at 80 °C in the presence of a small amount of hydrochloric acid (Kanto Chemicals) as a catalyst [15]. Raw materials were mixed with stoichiometric composition and stirred at room temperature for 5 min. This solution was impregnated on microcrystalline cellulose (MCC) powder (Asahi Kasei Corporation) with a ratio of 1:0.9 (solution:MCC). The impregnated MCC powder with solution was heat treated at 600 °C for 3 h and 800 °C for 2 h to remove the organic materials, after which the obtained powder was calcined at 950 °C for 3 h to obtain an oxide precursor. The oxide precursor was ground using an agate mortar and then reduced at 1000-1200 °C for 5 h in a tube furnace under a flow of an Ar (85%)-H₂ (15%) gaseous mixture at a rate of 800 mL/min.

2.2. Characterization

In order to determine the crystallinity of the phase, powder Xray diffraction (PXRD, Bruker D8 FOCUS) was carried out using Ni-filtered Cu K α radiation with a tube voltage of 40 kV and tube current of 40 mA. The XRD pattern was recorded in the 2 θ range of 15–70°. The Chemical bonding analysis of the samples was measured using the Fourier transform infrared (FTIR) spectroscopy (Bruker IFS-66/S, TENSOR27). The energy dispersive spectroscopy (EDS) mapping was carried out using high resolution transmission electron microscopy (HRTEM, JEM2100F). The photoluminescence (PL) and afterglow decay time were examined using a spectrometer (SCINCO, FS-2, Korea) with a xenon lamp excitation source (150 W) in the range of 300–700 nm. The afterglow decay times were measured for 300 s after 1 min exposure under 365 nm. All the measurements were performed at room temperature.

3. Results and discussion

Fig. 1(a) shows the XRD patterns of the $Ba_{2.98}Si_{1-y}O_5$:Eu_{0.02},P_y orange phosphors with different phosphorus concentrations reduced at 1000 °C. As shown in Fig. 1(a), all the $Ba_{2.98}Si_{1-y}O_5$:Eu_{0.02},P_y samples matched well with the tetragonal Ba_3SiO_5 (JCPDS no. 70-0667, space group of *I*4/*mcm*) and a small quantity of orthorhombic Ba_2SiO_4 which can easily coexistent with Ba_3SiO_5 [16–18]. No significant differences or peak shift were observed between without and with 0.006 mol phosphorus co-doping. This result indicates that the incorporation of P⁵⁺ ions did not affect the crystal structure of the Ba_3SiO_5 host lattice.

Fig. 1(b) presents the FT-IR spectra of the $Ba_{2.98}Si_{1-y}O_5$: $Eu_{0.02}$, P_y phosphors with various phosphorus concentrations reduced at 1000 °C. The broad absorption bands around 3400 cm⁻¹ and 1630 cm⁻¹ correspond to the surface adsorbed moisture. The peak at 1386 cm⁻¹ was assigned to the Ba/Eu-O bond and 1100-400 cm⁻¹ was attributed to the Si-O tetrahedron vibrations [19,20]. A weak peak at ~1035 cm⁻¹ was only observed in the P doped samples (Fig. 1(b) inset). This peak can be characterized as PO_4^{3-} , indicating that phosphorus ions seem to be well diffused in the structure [21,22]. Fig. 1(c) and (d) also show an even distribution of phosphorus in the material along with other host elements (Ba,Si,O,Eu).

Fig. 2 shows the photoluminescence and persistent luminescence properties of the Ba2.98Si1-vO5:Eu0.02,Pv phosphors with different phosphorus concentrations reduced at 1000 °C. Ba₃SiO₅:Eu²⁺.P⁵⁺ showed a broad band excitation spectrum in a range from UV to the blue region as well as a broad orange emission band with a maximum peak wavelength at 575 nm under an excitation light source of 400 nm attributed to the $4f^{6}5d^{1} \rightarrow 4f^{7}$ transition of the Eu^{2+} ion, as shown in Fig. 2(a) [23]. The Ba₃SiO₅ crystal structure has two Ba (tenfold for Ba(1) and eightfold for Ba(2)). The orange emission is owing to the Eu^{2+} in the Ba(1) site which have the larger crystal field due to the larger tenfold coordination number(CN) than Ba(2)site [24]. Ba2.98Si0.994O5:Eu0.02,P0.006 has the highest emission intensity, although a greater amount of doping could cause degradation of the luminescence property.

Fig. 2(b) and the inset show the persistent luminescence intensity and photographs as a function of time, respectively. The phosphorous co-doped sample exhibits more intense orange persistent luminescence. The existence of phosphorus in the structure improved the persistent luminescence property. The Ba₃SiO₅ crystal structure has two Ba (tenfold for Ba(1) and eightfold for Ba(2)) and one Si (fourfold) cation crystallographic sites that can be substituted by phosphorus ions [16]. The ionic radius percentage difference between the dopant (P^{5+}) and the possible substituted ions (Ba²⁺, Si⁴⁺) in Ba₃SiO₅ was calculated based on equation (1): [25]

$$D_r = 100 \times [R_m(\mathrm{CN}) - R_d(\mathrm{CN})]/R_m(\mathrm{CN}), \tag{1}$$

where D_r is the radius percentage difference, CN is the coordination number, $R_m(CN)$ is the radius of the host cation, and $R_d(CN)$ is the radius of the dopant. The value D_r between P⁵⁺ and the fourcoordinated Si⁴⁺ site is 34.62%, while D_r between P⁵⁺ and Ba²⁺ on the ten- and eight-coordinated sites are 88.82% and 88.03%, respectively. Therefore, P⁵⁺ ions are more appropriate for substituting the Si⁴⁺ site than the Ba²⁺ sites. Replacing Si⁴⁺ sites with P⁵⁺ ions having a different charge state can introduce lattice defects due to the charge compensation. As shown in equation (2), four P⁵⁺ ions substituted five Si⁴⁺ ions and introduce four P_{Si} positive and a $V_{Si}^{'''}$ negative defects. Captured charges by this defects can be thermally released from the trap centers to luminescence centers. Download English Version:

https://daneshyari.com/en/article/4765740

Download Persian Version:

https://daneshyari.com/article/4765740

Daneshyari.com