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A B S T R A C T

By use of recurrence quantification analysis (RQA), twelve features were extracted from the
electrochemical noise signals generated by three types of corrosion: uniform, pitting and passivation.
Machine learning methods, i.e. linear discriminant analysis (LDA) and random forests (RF), were used to
identify the different corrosion types from those features. Both models gave satisfactory performance,
but the RF model showed better prediction accuracy of 93% than the LDA model (88%). Furthermore, an
estimation of the importance of the variables by use of the RF model suggested the RQA variables
laminarity (LAM) and determinism (DET) played the most significant role with regard to identification of
corrosion types. In addition, the comparison of noise resistance with the resistance obtained from EIS
measurement showed that the noise resistance can be used for monitoring corrosion rate variations not
only for uniform corrosion and passivation, but also for pitting.

© 2017 Published by Elsevier Ltd.

1. Introduction

The concept of electrochemical noise (EN) was first introduced
by Iverson [1] and Tyagai et al. [2] decades ago. Back then, the
research focus was merely on potential fluctuations. Subsequently,
in 1986, Eden et al. [3] further developed the noise measurement
setup, which included two identical working electrodes (WE)
connected by a zero resistance ammeter (ZRA), a reference
electrode (RE) and a potentiometer, allowing the recording of
current and potential noise simultaneously. Since then, EN with
ZRA has been widely studied in the corrosion field, owing to its
ease of setting up, non-destructiveness, non-intrusiveness and the
ability to provide information on both the corrosion rate and type
which other electrochemical techniques failed to offer [4–9].

Among various research areas, the identification of different
types of corrosion has always attracted considerable interest from
corrosion researchers and engineers. Numerous efforts have been
made to extract discriminative features from collected EN data to
indicate corrosion types. These features can be sourced from three

kinds of analytical domains, namely the time domain, frequency
domain and time-frequency domain. The primary feature obtained
from frequency domain analysis is the roll-off slope of the power
spectral density (PSD) plot [10]. A large number of indicators have
been extracted from the time domain analysis of the EN data,
including:

(i) Statistics, such as the standard deviation, kurtosis, skewness,
and localization index of measurements [11];

(ii) The cumulative probability of corrosion events and Weibull
probability plots from transient analysis [12];

(iii) Largest Lyapunov exponent and correlation dimension from
chaotic analysis [13,14];

(iv) Recurrence rate, determinism, maxline, etc. from recurrence
quantification analysis [15];

(v) Hausdorff exponent, Hurst exponent and spectral-power
exponents from fractal analysis [16];

(vi) Energy distribution plot from wavelet analysis [17].
(vii) In addition, Homborg et al. [18] have published several papers

on the time-frequency joint analysis by Hilbert-Huang
transformation which showed good application prospect.

Recently, owing to the rapid development in machine learning
techniques, new ideas have been proposed for the interpretation of
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electrochemical noise. For example, Huang et al. [19–21] made use
of cluster analysis of current and potential signals and LDA models
to identify different pitting states in low carbon steel exposed to
NaHCO3 + NaCl solutions. Li et al. [22] have used features extracted
from EN signals generated by uniform corrosion, pitting and
passivation in 304 stainless steel as predictors in artificial neural
network models designed to distinguish between different types of
corrosion.

More recently, the authors [23] have proposed a formal
methodology for the identification of localized corrosion in low
carbon steel from uniform corrosion based on the use of recurrence
quantification analysis (RQA). This statistical process control
approach could be used to monitor corrosion in a continuous
way with high reliability, although the discrimination between
localized corrosion and passivation needs to be further improved.
In the previous study, only four RQA variables were used to set up
the corrosion monitoring scheme and the number of data in the
passivation system was limited. In this study, to improve the
separability of pitting and passivation, the EN signals were
collected from the same corrosion systems with different sizes
of electrodes, creating a larger database for the following model
development. Meanwhile, an extended set of feature variables
were extracted by recurrence quantification analysis (RQA) of the
EN signals. LDA and RF models were subsequently developed with
the extracted RQA variables as predictors to identify different
corrosion types. In addition, noise resistance was compared with
the corrosion resistance obtained from electrochemical impedance
spectroscopy (EIS) to explore its usefulness as a corrosion rate
indicator.

2. Methodology

2.1. Recurrence quantification analysis

The recurrence plot (RP) is a graphical representation of a
square matrix as represented by Eq. (1):

Ri;j ¼ H e� k xi � xj k
� �

; i; j ¼ 1; 2; . . . ; N ð1Þ
where Ri,j is the i; jð Þth point in the recurrence plot, N is the number
of points in the dataset, e is a predefined threshold radius, xi, xj are
the measured EN values at times iand j, and &tpcheck; refers to
Euclidean distance between this pair of data points, and H
represents the Heaviside function, which gives values of either
zero or one, i.e. if the distance between xi and xj falls within the
threshold radius, then Ri,j= 1, otherwise, Ri,j = 0.

Recurrence quantification analysis (RQA) was used to extract
twelve variables from the RPs, as shown in Table 1. An open source
Matlab toolbox – Cross Recurrence Plot Toolbox – was used to do
the calculations [24]. The threshold value e was determined as
0.02s (s is the standard deviation of the linear-detrended data
segment), since it could best reveal the differences of the RQA
variables in different corrosion systems. A detailed definition and
description of the variables can be found in [23–26].

2.2. Linear discriminant analysis

Linear discriminant analysis (LDA) is commonly used for
pattern recognition problems or simply used for dimensionality
reduction before classification. The idea is similar to principal
component analysis (PCA) in the sense of linear transformation.

Table 1
Recurrence quantification variables used in present work.

Number RQA variable Equation

1 Recurrence rate
RR ¼ 1

N2

XN

i;j¼1

Ri;j eð Þ
2

Determinism
DET ¼

XN

l¼lmin
lP lð Þ

XN

i;j
Ri;j eð Þ

; lmin ¼ 2
P lð Þ � Histogram of the diagonal lines* of length l.

3 Averaged diagonal length
Lmean ¼

XN

l¼lmin
lP lð Þ

XN

l¼lmin
P lð Þ4

Length of longest diagonal line Lmax ¼ max li; i ¼ 1; 2; . . . Nlf gð
Nl�Total number of diagonal lines.

5 Entropy of diagonal length (ENTR1)
ENTR1 ¼ �

XN

l¼lmin

p lð Þlnp lð Þ
p lð Þ � Probability distribution of diagonal lines.

6 Laminarity
LAM ¼

XN

v¼vmin
vP vð Þ

XN

v¼1
vP vð Þ

; vmin ¼ 2
P vð Þ � Histogram of vertical lines** of length v.

7 Trapping time
TT ¼

XN

v¼vmin
vP vð Þ

XN

v¼vmin
P vð Þ8

Length of longest vertical line Vmax ¼ max vi; i ¼ 1; 2; . . . ; Nvf gð
Nv � Total number of vertical lines.

9 Recurrence times of 1st type RT1 ið Þ ¼ ti � ti�1 ji ¼ 1; 2; . . .f g
10 Recurrence times of 2nd type RT2 ið Þ ¼ t

0
i � t

0
i�1ji ¼ 1; 2; . . .

� �

11 Entropy of recurrence period density (ENTR2)
ENTR2 ¼ � 1

lnðtmaxÞ�
Xtmax

t¼1

PðtÞ�lnðPðtÞÞ
P tð Þ ¼ R tð Þ=

Xtmax

k¼1

R kð Þ � Recurrence time probability density.
R tð Þ � The histogram of recurrence times.
tmax � The maximum recurrence time.

12 Transitivity
TRANS ¼ S

N
i;j;k¼1Ri;j�Rj;k�Rk;j

S
N
i;j;k¼1Ri;j �Rj;k�Rk;j

Notes: * A diagonal line is the line formed with consecutive recurrent points and parallel to the 45� line of a square. ** A vertical line is the line parallel to the y axis and
consisted of recurrent points. The length of a line is represented by the number of the recurrent points in the line.
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