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a b s t r a c t

We consider a variant of the multidimensional assignment problem (MAP) with decomposable costs in
which the resulting optimal assignment is described as a set of disjoint stars. This problem arises in
the context of multi-sensor multi-target tracking problems, where a set of measurements, obtained from
a collection of sensors, must be associated to a set of different targets. To solve this problem we study two
different formulations. First, we introduce a continuous nonlinear program and its linearization, along
with additional valid inequalities that improve the lower bounds. Second, we state the standard MAP for-
mulation as a set partitioning problem, and solve it via branch and price. These approaches were put to
test by solving instances ranging from tripartite to 20-partite graphs of 4 to 30 nodes per partition. Com-
putational results show that our approaches are a viable option to solve this problem. A comparative
study is presented.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The multidimensional assignment problem (MAP), originally
introduced by Pierskalla (1968), aims to minimize the overall cost
of assignment when matching elements from N ¼ fN1; . . . ;Nng
(n > 2) disjoint sets of equal size m. It comes as a natural general-
ization of the two-dimensional Assignment Problem (AP), known
to be polynomially solvable (Edmonds & Karp, 1972; Kuhn,
1955). Among all the different generalizations of the MAP, the
one considered in this paper is the axial MAP (hereafter referred
to as MAP). In an axial MAP, each element of every set must be as-
signed to exactly one of m disjoint n-tuples, and each n-tuple must
contain exactly one element of each set. Contrary to the AP, the
MAP is known to be NP-hard (Karp, 2010) for all values of n > 2.

The MAP is usually presented as the following integer (0–1)
program
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where for every n-tuple ði1; i2; . . . ; inÞ 2 N1 � N2 � � � � � Nn, variable
xi1 i2 ;...;in takes the value of one if elements of the given n-tuple belong
to the same assignment, and zero otherwise. The total assignment
cost (1) is computed as the cost of matching elements from different
sets together. As an example, an assignment which selects elements
ði1; i2; . . . ; inÞ to be grouped together would have a cost of ci1 i2 ;...;in .

Depending on the definition of the assignment costs, there are
several variations of the MAP that can be considered. These varia-
tions are mainly associated with cases where the assignment cost
of each n-tuple can be decomposed as a function of all possible
pairwise assignment costs between elements of different sets. That
is, ci1 i2 ;...;in ¼ f ðci1 i2 ; . . . ; cinin�1 Þ, where f : N1 � N2 [ � � � [ Nn�1�
Nn ! R and cisit is the cost of assigning together elements is 2 Ns

and it 2 Nt , for s–t. In general, the main advantage of having
decomposable cost functions is that there may be ways of tackling
the problem without having to completely enumerate all of the dif-
ferent assignment costs, which can be exponentially many. More-
over, most of these MAP variations can be associated with a
weighted n-partite graph, in which the elements are represented
by the vertices of the graph, each of the edges describes the deci-
sion of assigning two elements within the same n-tuple, and the
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weights on the edges account for the corresponding assignment
costs. We provide a detailed explanation of this representation in
Section 2.

Based on the applications and the context of the problem, there
are different definitions of the MAP with decomposable costs that
can be found in the literature (Aneja & Punnen, 1999; Bandelt, Cra-
ma, & Spieksma, 1994; Burkard, Rudolf, & Woeginger, 1996; Crama
& Spieksma, 1992; Malhotra, Bhatia, & Puri, 1985; Kuroki & Matsui,
2009). In this paper we consider the case where each n-tuple of any
feasible assignment is assumed to form a star (see, Bandelt et al.,
1994). Nonetheless, since most of the extant literature concen-
trates on the case where the n-tuples form cliques, we also provide
a brief description of the latter to emphasize the differences and
enrich the discussion.

For the case of the cliques, a feasible assignment includes all
possible pairwise connections within the elements of each tuple
and thus, the cost of tuple ði1; i2; . . . ; inÞ 2 N1 � N2 � � � � � Nn is de-
fined as the sum of all pairwise assignment costs. That is,

ci1 i2 ;...;in ¼
Xn

s¼1

Xn

t¼sþ1

cisit ð6Þ

On the other hand, for the case of the stars, one element of each
tuple is assigned to be a center (or representative) and the other
elements are considered to be the leafs (or legs) of the star. Note
that, contrary to the case of the cliques, each tuple can generate
many different star configurations, depending on which element
is selected as the center. Assuming for example, that the center is
element is, the cost of the induced star is the sum of the pairwise
costs between is and the other elements of the tuple. In view of
these multiple possible configurations, the cost of tuple
ði1; i2; . . . ; inÞ 2 N1 � N2 � � � � � Nn is defined as the minimum cost
among the costs of all the possible star configurations of the tuple.
That is,

ci1 i2 ;...;in ¼ min
is2fi1 ;i2 ;...;ing

X
t2f1;2;...;ngnfsg

cisit

( )
ð7Þ

We name the aforementioned MAP version, the multidimen-
sional star assignment problem (MSAP), because of the particular
structure that each feasible assignment has. Despite the fact that
this variant is often referred to as a particular case of the clique
version (Bandelt et al., 1994), we consider that it is relevant to state
it in a separate form. We base our argument on the fact that there
exist applications for which the use of this variant could be of ben-
efit. Moreover, there are formulations and techniques specifically
tailored to solve the MSAP.

Several methodologies have been proposed to solve different
variants and generalizations of the MAP, including exact ap-
proaches, approximation algorithms, heuristics, and metaheuris-
tics. In particular, given the inherent NP-hardness of the
problem, heuristic approaches have gained practical interest over
the years. These include greedy heuristics (Balas & Saltzman,
1991), generalized randomized adaptive search procedures
(GRASP) (Murphey, Pardalos, & Pitsoulis, 1999; Robertson III,
2001), GRASP with path relinking (Aiex, Resende, Pardalos, & Tor-
aldo, 2005), randomized algorithms (Oliveira & Pardalos, 2004), ge-
netic algorithms (Gaofeng & Lim, 2003), memetic algorithms
(Karapetyan & Gutin, 2011b), local search heuristics (Bandelt,
Maas, & Spieksma, 2004; Karapetyan & Gutin, 2011a), simulated
annealing (Clemons, Grundel, & Jeffcoat, 2004), decomposition
schemes (Vogiatzis, Pasiliao, & Pardalos, 2013), Lagrangian based
procedures (Balas & Saltzman, 1991; Frieze & Yadegar, 1981; Poore
& Robertson, 1997), and branch-and-bound techniques (Larsen,
2012; Pasiliao, Pardalos, & Pitsoulis, 2005).

From the perspective of approximation algorithms, there exist
the works of Crama and Spieksma (1992) and Bandelt et al.
(1994). Furthermore, contributions to the study of the polyhedral
structure of the MAP formulation and other generalizations can
be found in Appa, Magos, and Mourtos (2006), Balas and Saltzman
(1989) and Magos and Mourtos (2009). Finally, studies related to
the asymptotic behavior of the expected optimal value of the
MAP, as well as tools to perform probabilistic analysis of MAP in-
stances are given in Krokhmal, Grundel, and Pardalos (2007), Grun-
del, Oliveira, and Pardalos (2004) and Gutin and Karapetyan
(2009).

Among all the proposed techniques listed above, we next focus
our attention on approaches that are either proposed to tackle the
MSAP, or that are designed to solve generalizations of the MAP, and
thus can also be used to solve this problem. To solve the MSAP, Cra-
ma and Spieksma (1992) introduced an approximation algorithm
designed to solve the three-dimensional case (i.e., n ¼ 3). The pro-
posed algorithm consists of sequentially solving two linear assign-
ment problems. First, the elements of set N1 are assigned to the
ones of set N2 and then, the resulting pairs are assigned to the ele-
ments of set N3. The authors proved that if the pairwise assignment
costs satisfy the triangle inequality, the proposed algorithm pro-
duces a 1

2 approximation. Moreover, noting that this algorithm
can produce three different solutions by simply varying the assign-
ment order of the sets (e.g., assigning first the elements of N1 to the
ones of set N3 and then, assigning the resulting pairs to the ele-
ments of set N2), Crama and Spieksma proved that selecting the
best of the three solutions yields a 1

3 approximation.
In a subsequent study, Bandelt et al. (1994) proposed two type

of heuristics, namely the hub and the recursive heuristics. They can
be viewed as generalizations of the approach proposed by Crama
and Spieksma (1992), but designed to solve the general n-dimen-
sional case. The authors also provide an upper bound on the ratio
between the cost of the solutions produced by these heuristics
and the cost of the optimal solution.

As mentioned before, the MSAP is a particular case of the MAP
and therefore, it can be solved using formulation (1)–(5). The poly-
hedral studies introduced by Balas and Saltzman (1989), for the
three-dimensional case, and by Appa et al. (2006) and Magos and
Mourtos (2009), for a more general version of the MAP, can be used
to enhance (1)–(5) via the introduction of cutting planes. Using for-
mulation (1)–(5) to solve the MSAP has one main drawback. It re-
quires that all possible star costs be generated beforehand. This
could be problematic because the total number of possible stars
grows exponentially with the size of the problem (see Section 3).
To circumvent this issue, it is possible to embed (1)–(5) within a
branch-and-price scheme (see Section 3). Therefore, instead of
enumerating all possible stars from the beginning, those are gener-
ated via column generation, in case they are considered suitable.
The downside of this approach, though, is that mixing cutting
planes and column generation is in general a difficult task (Barn-
hart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998; Desaul-
niers, Desrosiers, & Spoorendonk, 2011; Lübbecke & Desrosiers,
2005).

For additional information about the MAP and its variations, we
refer the reader to the surveys provided by Burkard, Çela, Pardalos,
and Pitsoulis (1998), Burkard and Çela (1999), Burkard (2002), Gil-
bert and Hofstra (1988), Pardalos and Pitsoulis (2000), Pentico
(2007) and Spieksma (2000).

This paper is inspired by the context of multi-sensor multi-tar-
get tracking problems, that involve the assignment of a series of
sensor observations into a set of different targets. The relationship
between these problems and the MAP, has been stated and studied
by many authors including Bandelt et al. (2004), Chummun,
Kirubarajan, Pattipati, and Bar-Shlom (2001), Deb, Pattipati, and
Bar-Shalom (1993), Deb, Yeddanapudi, Pattipati, and Bar-Shalom
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