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a b s t r a c t

We propose an axiomatic definition of a dispersion measure that could be applied for any finite sample of

k-dimensional real observations. Next we introduce a taxonomy of the dispersion measures based on the

possible behavior of these measures with respect to new upcoming observations. This way we get two

classes of unstable and absorptive dispersion measures. We examine their properties and illustrate them

by examples. We also consider a relationship between multidimensional dispersion measures and mul-

tidistances. Moreover, we examine new interesting properties of some well-known dispersion measures

for one-dimensional data like the interquartile range and a sample variance.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Various summary statistics are always applied wherever deci-

sions are based on sample data. The main goal of those characteris-

tics is to deliver a synthetic information on basic features of a data

set under study. It seems that the most commonly used summary

statistics are central tendency measures (like the mean, median,

mode, etc.) indicating a typical behavior of the examined variable.

However, no measure of central tendency can reveal the whole

picture of a variable. Indeed, two or more samples may have the

same mean (or other central tendency) although they differ sig-

nificantly. Therefore, besides central tendency a dispersion of ob-

servations in a sample is also of interest. Moreover, in many cases

we have to monitor variability as carefully as the location param-

eters. As a typical example let us consider the Statistical Process

Control where no alarm signal found on the X̄-chart cannot be au-

tomatically interpreted as the process is under control until the

S-chart (or R-chart) confirms no alarm caused by the increase of

variability.

Many tools have been proposed to characterize dispersion, like

the range, interquartile range, sample variance, standard deviation

an so on. They differ in construction, properties and situations they
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are intended for use. It is also worth mentioning that several terms

are used in the literature as regards dispersion measures like mea-

sures of variability, scatter, spread or scale. Some authors reserve

the notion of the dispersion measure only to those cases when

variability is considered relative to a given fixed point (like a sam-

ple variance which averages squared deviation of the data points

from their mean) and then use the term spread as a more general

one (see Bickel & Lehmann (1976, 1979); Wilcox (2005)). However,

such distinction in terminology is neither consistent nor commonly

accepted. Thus in our paper we do not attach importance to such

distinctions.

Some of the considered tools measure the absolute spread (like

those mentioned before), while the other indicate the relative scat-

ter (e.g. the coefficient of variation or Gini coefficient). Most of

them are dedicated to quantitative data (ratio scale) but one can

found also a few that might be used to characterize qualitative ob-

servations (nominal scale).

What is interesting is that almost all well-known measures

of dispersion could be used only for one-dimensional data. It is

rather inconvenient especially that most of the contemporary data

sets available and processed in practice is multidimensional. Of

course, having such multidimensional data set one may apply uni-

variate dispersion measures to each variable separately, but this

way we loose information on possible relations between vari-

ables. Then, as a possible remedium, one may consider e.g. a co-

variance matrix which delivers both variances of all single vari-

ables and covariances for all pairs of variables. Hence, having a

data set of k-dimensional observations we get a matrix of k2

numbers instead of a single real value of a desired measure of
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dispersion characterizing somehow the whole multidimensional

sample.

Keeping in mind all the remarks mentioned above we propose

a general definition of a dispersion measure that could be ap-

plied for any finite sample of k-dimensional real observations, i.e.

x1, . . . , xn ∈ R
k. Next we examine basic properties of so defined

measures and illustrate them by examples. We also consider the

relationship between multidimensional dispersion measures and

multidistances introduced by Martín and Mayor (2009, 2011).

Recently, Gagolewski (2015) considered the dispersion measures

from the aggregation theory point of view. He showed that al-

though aggregation theory mainly focuses on central tendency

measures (see Beliakov, Pradera, & Calvo (2007); Calvo, Mayor,

and Mesiar (2002); Grabisch, Marichal, Mesiar, and Pap (2009)), it

may deliver an interesting insight to measures of spread of one-

dimensional quantitative data. In our case we show that some con-

siderations on general multidimensional dispersion measures may

also lead to some interesting conclusions for one-dimensional data

sets.

The paper is organized as follows: In Section 2 we present

the desired requirements each measure of dispersion should sat-

isfy. Next, we distinguish two basic types of dispersion mea-

sures: unstable and absorptive dispersion measures (Section 3 and

Section 4, respectively). Section 5 is devoted to some interesting

properties of the interquartile range that appear in practice when

we try to estimate it from data. In Section 6 we prove a theo-

rem showing a relation between unstable and absorptive disper-

sion measures. Finally, in Section 7 we examine the relationship

between dispersion measures and multidistances.

2. Dispersion measures

Consider a sample of n observations from the k-dimensional

real space, i.e. x1, . . . , xn ∈ R
k. Descriptive statistics, also called

summary statistics, provide various measured describing different

aspects of the underlying data. Besides central tendency measures,

the next group of the most useful summary statistics is formed

by measures of dispersion. Although each person has some intu-

ition about measures of dispersion, it seems that a formal defini-

tion would be desirable.

Definition 2.1. A function � :
⋃∞

n=1

(
R

k
)n → [0,∞) is called a

measure of dispersion if � is not identically zero function which

satisfies the following axioms for any x1, . . . , xn ∈ R
k:

(A1) �(x, . . . , x) = 0

(A2) � is symmetric, i.e.

�(xπ(1), . . . , xπ(n)) = �(x1, . . . , xn)

for any permutation π : {1, . . . , n} → {1, . . . , n},
(A3) � is translation invariant, i.e.

�(x1 + a, . . . , xn + a) = �(x1, . . . , xn)

for any a ∈ R
k,

(A4) � is rotation invariant, i.e.

�(Rx1, . . . , Rxn) = �(x1, . . . , xn)

for any rotation matrix R
k (i.e. R is an orthogonal matrix and

such that det R = 1).

Sometimes one more axiom is also considered:

(A5) there exists a function ρ : R → [0,∞) such that

�(ax1, . . . , axn) = ρ(a)�(x1, . . . , xn)

for a ∈ R
+.

Usually adding another observation to a data set under study

we expect changes in the dispersion measure value, no matter

where the new point is located. However, there also exists a class

of measures for which by adding new observations we do not

change the scatter of the data set (provided those observations be-

long to some area). To clarify the situation in further sections we

indicate two important subfamilies of dispersion measures.

3. Unstable dispersion measures

Definition 3.1. A measure of dispersion � :
⋃∞

n=1

(
R

k
)n → [0,∞)

is called unstable if

�(x1, . . . , xn, xn+1) �= �(x1, . . . , xn), (1)

for almost all xn+1 ∈ R
k.

In other words, for any unstable dispersion measure and any

data set there exist a set which has the k-dimensional Lebesgue

measure zero and such that joining any its point to the data set do

not change a value of the dispersion obtained for the initial data

set. Let us now discuss some examples and basic properties of the

unstable dispersion measures.

Example 3.2. A one-dimensional sample, i.e. x1, . . . , xn ∈ R pro-

vides many examples of well-known unstable dispersion mea-

sures, like different sample variances: s2 = 1
n−1

∑n
i=1(xi − x̄)2, s2

b
=

1
n

∑n
i=1(xi − x̄)2 or corresponding sample standard deviation.

Example 3.3. Having a sample x1, . . . , xn ∈ R
k let us define the fol-

lowing function

Ge(x1, . . . , xn) =
n∑

i=1

n∑
j=1

d2
e (xi, x j), (2)

where de(xi, xj) denotes the Euclidean distance in R
k. It can be

shown that (2) is an unstable dispersion measure. To prove it, let

us firstly assume that Am = ∑n
i=1(xm

i
− x̄m)2, where xm

i
denotes the

mth component of xi and x̄m = 1
n

∑n
i=1 xm

i
. Then for any j we get

Am =
n∑

i=1

(
xm

i − xm
j + xm

j − x̄m
)2

=
n∑

i=1

(
xm

i − xm
j

)2 + 2

n∑
i=1

(
xm

i − xm
j

)(
xm

j − x̄m
)

=
n∑

i=1

(
xm

i − xm
j

)2 − n
(
xm

j − x̄m
)2

.

Summing up both sides over j we get nAm = ∑n
i, j=1(xm

i
− xm

j
)2 −

nAm, which implies that

Am = 1

2n

n∑
i=1

n∑
j=1

(
xm

i − xm
j

)2 = 1

n

∑
1�i< j�n

(
xm

i − xm
j

)2

and

n∑
i=1

n∑
j=1

d2
e (xi, x j) = n

k∑
m=1

Am = n(n − 1)
k∑

m=1

S2
m,

where S2
m denotes the sample variance of xm

1
, . . . , xm

n . It is clear that

a linear combination of unstable measures is also an unstable dis-

persion measure.

Lemma 3.4. Let �1, . . . ,�m denote unstable dispersion measures

such that for all i = 1, . . . , n and j = 1, . . . , m a set {xi : � j = 0} has

a zero Lebesgue measure and let f: [0, ∞)m → [0, ∞) be a func-

tion which is not constant, is continuous and f (0) = 0. Then �′ =
f (�1, . . . ,�m) is also an unstable dispersion measure.
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