
Engineering 2 (2016) 179–195

Research
iCity & Big Data—Review

Strategies and Principles of Distributed Machine Learning on Big Data

Eric P. Xing *, Qirong Ho, Pengtao Xie, Dai Wei
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 December 2015
Revised 1 May 2016
Accepted 23 May 2016
Available online 30 June 2016

The rise of big data has led to new demands for machine learning (ML) systems to learn complex mod-
els, with millions to billions of parameters, that promise adequate capacity to digest massive datasets
and offer powerful predictive analytics (such as high-dimensional latent features, intermediate repre-
sentations, and decision functions) thereupon. In order to run ML algorithms at such scales, on a distrib-
uted cluster with tens to thousands of machines, it is often the case that significant engineering efforts
are required—and one might fairly ask whether such engineering truly falls within the domain of ML
research. Taking the view that “big” ML systems can benefit greatly from ML-rooted statistical and algo-
rithmic insights—and that ML researchers should therefore not shy away from such systems design—we
discuss a series of principles and strategies distilled from our recent efforts on industrial-scale ML solu-
tions. These principles and strategies span a continuum from application, to engineering, and to theo-
retical research and development of big ML systems and architectures, with the goal of understanding
how to make them efficient, generally applicable, and supported with convergence and scaling guaran-
tees. They concern four key questions that traditionally receive little attention in ML research: How can
an ML program be distributed over a cluster? How can ML computation be bridged with inter-machine
communication? How can such communication be performed? What should be communicated between
machines? By exposing underlying statistical and algorithmic characteristics unique to ML programs
but not typically seen in traditional computer programs, and by dissecting successful cases to reveal
how we have harnessed these principles to design and develop both high-performance distributed ML
software as well as general-purpose ML frameworks, we present opportunities for ML researchers and
practitioners to further shape and enlarge the area that lies between ML and systems. .

© 2016 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Machine learning
Artificial intelligence big data
Big model
Distributed systems
Principles
Theory
Data-parallelism
Model-parallelism

 * Corresponding author.
 E-mail address: epxing@cs.cmu.edu

http://dx.doi.org/10.1016/J.ENG.2016.02.008
2095-8099/© 2016 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/ locate /eng

Engineering

1. Introduction

Machine learning (ML) has become a primary mechanism for dis-
tilling structured information and knowledge from raw data, turning
them into automatic predictions and actionable hypotheses for di-
verse applications, such as: analyzing social networks [1]; reasoning
about customer behaviors [2]; interpreting texts, images, and vide-
os [3]; identifying disease and treatment paths [4]; driving vehicles
without the need for a human [5]; and tracking anomalous activity
for cybersecurity [6], among others. The majority of ML applications
are supported by a moderate number of families of well-developed

ML approaches, each of which embodies a continuum of technical
elements from model design, to algorithmic innovation, and even
to perfection of the software implementation, and which attracts
ever-growing novel contributions from the research and develop-
ment community. Modern examples of such approaches include
graphical models [7–9], regularized Bayesian models [10–12],
nonparametric Bayesian models [13,14], sparse structured mod-
els [15,16], large-margin methods [17,18], deep learning [19,20],
matrix factorization [21,22], sparse coding [23,24], and latent space
modeling [1,25]. A common ML practice that ensures mathemati-
cal soundness and outcome reproducibility is for practitioners and

180 E.P. Xing et al. / Engineering 2 (2016) 179–195

researchers to write an ML program (using any generic high-level
programming language) for an application-specific instance of a
particular ML approach (e.g., semantic interpretation of images via a
deep learning model such as a convolution neural network). Ideally,
this program is expected to execute quickly and accurately on a vari-
ety of hardware and cloud infrastructure: laptops, server machines,
graphics processing units (GPUs), cloud computing and virtual
machines, distributed network storage, Ethernet and Infiniband net-
working, to name just a few. Thus, the program is hardware-agnos-
tic but ML-explicit (i.e., following the same mathematical principle
when trained on data and attaining the same result regardless of
hardware choices).

With the advancements in sensory, digital storage, and Internet
communication technologies, conventional ML research and devel-
opment—which excel in model, algorithm, and theory innovations—
are now challenged by the growing prevalence of big data collec-
tions, such as hundreds of hours of video uploaded to video-sharing
sites every minute†, or petabytes of social media on billion-plus-user
social networks‡. The rise of big data is also being accompanied by
an increasing appetite for higher-dimensional and more complex
ML models with billions to trillions of parameters, in order to sup-
port the ever-increasing complexity of data, or to obtain still higher
predictive accuracy (e.g., for better customer service and medical di-
agnosis) and support more intelligent tasks (e.g., driverless vehicles
and semantic interpretation of video data) [26,27]. Training such big
ML models over such big data is beyond the storage and computa-
tion capabilities of a single machine. This gap has inspired a growing
body of recent work on distributed ML, where ML programs are
executed across research clusters, data centers, and cloud provid-
ers with tens to thousands of machines. Given P machines instead
of one machine, one would expect a nearly P-fold speedup in the
time taken by a distributed ML program to complete, in the sense
of attaining a mathematically equivalent or comparable solution to
that produced by a single machine; yet, the reported speedup often
falls far below this mark. For example, even recent state-of-the-art
implementations of topic models [28] (a popular method for text
analysis) cannot achieve 2× speedup with 4× machines, because of
mathematical incorrectness in the implementation (as shown in Ref.
[25]), while deep learning on MapReduce-like systems such as Spark
has yet to achieve 5× speedup with 10× machines [29]. Solving this
scalability challenge is therefore a major goal of distributed ML re-
search, in order to reduce the capital and operational cost of running
big ML applications.

Given the iterative-convergent nature of most—if not all—major
ML algorithms powering contemporary large-scale applications, at
a first glance one might naturally identify two possible avenues to-
ward scalability: faster convergence as measured by iteration num-
ber (also known as convergence rate in the ML community), and
faster per-iteration time as measured by the actual speed at which
the system executes an iteration (also known as throughput in the
system community). Indeed, a major current focus by many distrib-
uted ML researchers is on algorithmic correctness as well as faster
convergence rates over a wide spectrum of ML approaches [30,31]
However, it is difficult for many of the “accelerated” algorithms
from this line of research to reach industry-grade implementations
because of their idealized assumptions on the system—for example,
the assumption that networks are infinitely fast (i.e., zero synchro-
nization cost), or the assumption that all machines make the algo-
rithm progress at the same rate (implying no background tasks and
only a single user of the cluster, which are unrealistic expectations

for real-world research and production clusters shared by many us-
ers). On the other hand, systems researchers focus on high iteration
throughput (more iterations per second) and fault-recovery guar-
antees, but may choose to assume that the ML algorithm will work
correctly under non-ideal execution models (such as fully asyn-
chronous execution), or that it can be rewritten easily under a given
abstraction (such as MapReduce or Vertex Programming) [32–34].
In both ML and systems research, issues from the other side can be-
come oversimplified, which may in turn obscure new opportunities
to reduce the capital cost of distributed ML. In this paper, we pro-
pose a strategy that combines ML-centric and system-centric think-
ing, and in which the nuances of both ML algorithms (mathematical
properties) and systems hardware (physical properties) are brought
together to allow insights and designs from both ends to work in
concert and amplify each other.

Many of the existing general-purpose big data software plat-
forms present a unique tradeoff among correctness, speed of execu-
tion, and ease-of-programmability for ML applications. For example,
dataflow systems such as Hadoop and Spark [34] are built on a
MapReduce-like abstraction [32] and provide an easy-to-use pro-
gramming interface, but have paid less attention to ML properties
such as error tolerance, fine-grained scheduling of computation,
and communication to speed up ML programs. As a result, they of-
fer correct ML program execution and easy programming, but are
slower than ML-specialized platforms [35,36]. This (relative) lack
of speed can be partly attributed to the bulk synchronous parallel
(BSP) synchronization model used in Hadoop and Spark, in which
machines assigned to a group of tasks must wait at a barrier for the
slowest machine to finish, before proceeding with the next group
of tasks (e.g., all Mappers must finish before the Reducers can
start) [37]. Other examples include graph-centric platforms such as
GraphLab and Pregel, which rely on a graph-based “vertex program-
ming” abstraction that opens up new opportunities for ML program
partitioning, computation scheduling, and flexible consistency con-
trol; hence, they are usually correct and fast for ML. However, ML
programs are not usually conceived as vertex programs (instead,
they are mathematically formulated as iterative-convergent fixed-
point equations), and it requires non-trivial effort to rewrite them
as such. In a few cases, the graph abstraction may lead to incorrect
execution or suboptimal execution speed [38,39]. Of recent note
is the parameter server paradigm [28,36,37,40,41], which pro-
vides a “design template” or philosophy for writing distributed ML
programs from the ground up, but which is not a programmable
platform or work-partitioning system in the same sense as Hadoop,
Spark, GraphLab, and Pregel. Taking into account the common ML
practice of writing ML programs for application-specific instances,
a usable software platform for ML practitioners could instead offer
two utilities: ① a ready-to-run set of ML workhorse implemen-
tations—such as stochastic proximal descent algorithms [42,43],
coordinate descent algorithms [44], or Markov Chain Monte Carlo
(MCMC) algorithms [45]—that can be re-used across different ML al-
gorithm families; and ② an ML distributed cluster operating system
supporting these workhorse implementations, which partitions and
executes these workhorses across a wide variety of hardware. Such
a software platform not only realizes the capital cost reductions
obtained through distributed ML research, but even complements
them by reducing the human cost (scientist- and engineer-hours) of
big ML applications, through easier-to-use programming libraries
and cluster management interfaces.

With the growing need to enable data-driven knowledge distil-

† https://www.youtube.com/yt/press/statistics.html
‡ https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/

Download English Version:

https://daneshyari.com/en/article/478807

Download Persian Version:

https://daneshyari.com/article/478807

Daneshyari.com

https://daneshyari.com/en/article/478807
https://daneshyari.com/article/478807
https://daneshyari.com

