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a b s t r a c t 

We study the quadratic knapsack problem on instances where the profits are independent random vari- 

ables defined on the interval [0, 1] and the knapsack capacity is proportional to the number of items (we 

assume that the weights are arbitrary numbers from the interval [0, 1]). We show asymptotically that the 

objective value of a very easy heuristic is not far away from the optimal solution. More specifically we 

show that the ratio of the optimal solution and the objective value of this heuristic almost surely tends to 

1 as the size of the knapsack instance tends to infinity. As a consequence using randomly generated in- 

stances following this scheme seems to be inappropriate for studying the performance of heuristics and 

(to some extend) exact methods. However such instances are frequently used in the literature for this 

purpose. Additionally we introduce a class of test instances based on hidden cliques for which finding 

a good solution is much harder. We support this by theoretical observations as well as by performing 

computational experiments. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In the quadratic knapsack problem (QKP) we are given a set of 

n items each with an integer profit p j and weight w j . Moreover for 

each pair of items an additional profit p ij is given which accounts 

for interdependencies between the involved items. We look for a 

subset of items whose total weight does not exceed a given ca- 

pacity bound c and whose total profit is maximized. The problem 

can be modeled by the well known quadratic integer programing 

formulation: 

(QKP ) max 

n ∑ 

i =1 

p i x i + 

∑ 

1 ≤i< j≤n 

p i j x i x j (1) 

s.t. 

n ∑ 

i =1 

w i x i ≤ c (2) 

x i ∈ { 0 , 1 } , i = 1 , . . . , n (3) 

Here, x j = 1 means that item I j is included into the knapsack. 

Note that some profits p ij might also be 0, meaning that the 

involved items do not influence each other at all. 

The quadratic knapsack problem is a classical combinatorial op- 

timization problem which has many real-world applications (see 

e.g. Pisinger, 2007, Kellerer, Pferschy, & Pisinger, 2004 , Section 12). 

The NP -hardness of QKP can be easily seen by a reduction from 
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the maximum clique problem. When negative profits are allowed 

in a QKP instance ( Rader Jr. & Woeginger, 2002 ) proved that the 

problem becomes inapproximable, however for instances contain- 

ing only non-negative profits the approximability behavior remains 

open due to the following connection to the densest-k subgraph 

problem: this problem asks for a k vertex induced subgraph of a 

given graph G = (V, E) containing the maximum number of edges. 

This problem can be modeled as a QKP : the vertices v i of V cor- 

respond to items I i and all items have profits p i = 0 and weights 

w i = 1 . The quadratic profit p ij is set to 1 whenever (v i , v j ) ∈ E

and otherwise to 0. The knapsack constraint is set to k . Note 

that the densest- k subgraph problem is infamous for its open ap- 

proximability status. The existence of a PTAS for this problem is 

still open (under the standard assumption P � = N P ) and the best 

known approximation algorithm of Bhaskara, Charikar, Chlamtac, 

Feige, and Vijayaraghavan (2010) has a performance ratio of O (n 
1 
4 ) . 

Inapproximability results are only known under weaker complex- 

ity assumptions: Feige (20 02) and Khot (20 06) ruled out the 

existence of a PTAS under complexity assumptions dealing with 

average case hardness. Alon, Arora, Manokaran, Moshkovitz, and 

Weinstein (2011) showed that an hardness assumption on ran- 

dom k -AND formulas rules out the existence of any constant factor 

approximation algorithm. Finally ( Alon et al., 2011 ) even showed 

superconstant inapproximation results based on the hidden 

clique assumption. Clearly all these results also hold for QKP. 

Due to the need for solutions of QKP instances originating in 

real world problems there are many papers focusing on exact 

algorithms and (meta-)heuristics in the literature. In fact many of 
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them computationally show a very good performance, which in 

some sense contrasts the hardness of approximation results from 

above. Caprara, Pisinger, and Toth (1999) provided a fast and suc- 

cessful branch and bound algorithm where the calculation of the 

upper bounds is based on Lagrangian relaxation. Billionnet and 

Soutif (2004) presented an algorithm based on Lagrangian decom- 

position. Note that the algorithm of Caprara et al. (1999) works 

better for dense instances, whereas the algorithm of Billionnet and 

Soutif (2004) has its strength on spare instances. Both were able 

to solve instances of about 400 items. Helmberg, Rendl, and Weis- 

mantel (20 0 0) presented bounds based on semi-definite program- 

ing and cutting planes. Pisinger, Rasmussen, and Sandvik (2007) in- 

troduced an aggressive reduction strategy in order to fix some 

variables to its optimal solution values and demonstrated that in- 

stances of size up to 1500 variables can often be reduced signifi- 

cantly to instances containing about 100 items only. After the re- 

duction strategy they used an adaption of the branch and bound 

algorithm of Caprara et al. (1999) . Recently ( Fomeni, Kaparis, & 

Letchford, 2014 ) presented a cut and branch algorithm which is es- 

pecially successful on sparse instances. Létocart, Nagih, and Plateau 

(2012) gave a method for improving the computation time for get- 

ting upper bounds which can be incorporated in the above ap- 

proaches. Note that Pisinger (2007) surveys some of these methods 

(and others not mentioned here) in detail. 

Notable meta-heuristic approaches are the genetic algorithms of 

Julstrom (2005) and Julstrom (2012) . The algorithm based on Tabu 

search and GRASP from Yang, Wang, and Chu (2013) seems to be 

the currently best performing meta heuristic for QKP: even for in- 

stances containing 20 0 0 items the gap between the best found so- 

lution and an upper bound from Caprara et al. (1999) was small 

( < 1 . 5 percent ). A heuristic by Fomeni and Letchford (2013) which 

modified the classical dynamic program for the 0 − 1 knapsack 

problem together with a simple local search was able to find the 

optimum for almost all standard instances of size up to 380 items. 

1.1. Main contribution 

The main result of this paper indicates that the mismatch 

between the hardness results and the good performance of the 

heuristic approaches can be explained by the test instances used. 

The standard benchmark instances have its origin in Gallo, Ham- 

mer, and Simeone (1980) and were subsequently used in most 

computational papers. First a density δ is defined which corre- 

sponds to the probability that a profit p i or p ij is non-zero. When- 

ever a profit p ij ( i < j ) or p i is non-zero it is drawn uniformly at 

random from the interval [1, 100]. The weights w i are drawn uni- 

formly at random from the interval [1, 50]. Finally the capacity is 

drawn uniformly at random from the interval [0 , 
∑ 

w i ] (in more 

recent papers this interval was changed to [50 , 
∑ 

w i ] ). 

We will show that the following very easy heuristic will pro- 

duce a solution for instances of type ( Gallo et al., 1980 ) whose ob- 

jective value is (asymptotically) very close to the optimal solution 

value: sort the items in non-decreasing order of their weights and 

include the items greedily as long as they fit. 

More specifically we will show that QKP restricted to instances 

where the profits are independent and (to some extent) identically 

distributed random variables, the weights are arbitrary numbers 

from the interval [0, 1] and the knapsack constraint is linear in the 

number of items has the following property: the ratio of the solu- 

tion value of the above algorithm and the optimal solution value 

almost surely tends to 1. Note that the result even holds when- 

ever the profits are defined on an interval [0, M ] for some constant 

M . Hence, the instances of Gallo et al. (1980) fit into this scheme 

whenever the drawn capacity is linear in the number of items. 

Pisinger et al. (2007) introduced other types of instances which 

we will discuss in Section 3 . Moreover we will introduce a new 

class of instances for which the main result of this paper is not 

applicable. This class is based on the hidden clique assumption, 

which has been studies a lot in the past, but not in the context of 

QKP. In Section 4 we will computationally show that they are in- 

deed hard to solve for selected state of the art heuristic approaches 

from the literature. 

1.2. Asymptotic results for the quadratic assignment problem 

For the quadratic assignment problem and a related family of 

optimization problems called generic optimization problems similar 

results are known due to Burkard and Fincke (1985) . In a generic 

optimization problem a set E is given and the set F of feasible so- 

lutions S is a subset of the power set of E (i.e. F ⊆ P(E) ). Moreover 

every element e ∈ E gets assigned a cost c ( e ). The sum objective 

function is defined in the classical way for every set S as: 

C(S) = 

∑ 

e ∈ S 
c(e ) 

Burkard and Fincke (1985) showed that whenever the costs c ( e ) 

are i.i.d. random variables defined on the interval [0, 1] and some 

additional assumptions are fulfilled then for generic optimization 

problems with sum objective function the ratio of the worst and 

best feasible solution asymptotically tends to 1 in probability. The 

most important additional assumptions are the following: 

1. The size of every feasible solution S is the same. 

2. ∃ λ > 0 : lim n →∞ 

(λ| S| − log | F | ) = ∞ 

Assumption 2 is crucial and this property (though not stated 

explicitly in this form) is also central for our problem. It states that 

the number of feasible solutions is relatively small compared to the 

number of elements in a feasible solution S . Assumption 1 however 

does not hold for QKP. Later this result was extended to almost 

sure convergence by Szpankowski (1995) . Similar results also hold 

for bottleneck objective functions. 

Note however that there exists a result by Dyer, Frieze, and Mc- 

Diarmid (1986) which states that certain branch and bound algo- 

rithms will take more than exponential time for quadratic assign- 

ment instances with random costs. Hence, the results mentioned 

in this section as well as our result do not imply that finding the 

optimal solution of such a problem is easy. They just imply that 

finding good solutions is easy. 

2. Asymptotic analysis 

For deriving our main result we need the following Chernoff–

Hoeffding bounds that are based on Angluin and Valiant 

(1979) and can be found in McDiarmid (1998 , Theorem 2.3 p. 200): 

Theorem 1. Let the random variables X 1 , X 2 , . . . , X n be independent 

with 0 ≤ X k ≤ 1 for each k. Let S n = 

∑ 

X k and let μ = E(S n ) . Then 

for any 0 ≤ ε ≤ 1 : 

P [ S n ≥ (1 + ε) μ] ≤ e −
1 
3 ε 

2 μ

P [ S n ≤ (1 − ε) μ] ≤ e −
1 
2 ε 

2 μ

In this section we assume that the linear profits P i of a 

quadratic knapsack instance are i.i.d. random variables and the 

quadratic profits P ij are i.i.d. as well. Both distributions are de- 

fined on the interval [0, 1]. Note that the two distributions may 

differ, but the P i and the P ij are assumed to be mutually indepen- 

dent. Additionally the weights are arbitrary numbers from [0, 1]. 

This means that the weights might be random or part of the in- 

put. Moreover we assume that the knapsack capacity c is linear in 

n (i.e. c = λn for some constant λ ≤ 1). We moreover assume that 
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