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a b s t r a c t 

We consider the multi-trip vehicle routing problem, in which each vehicle can perform several routes 

during the same working shift to serve a set of customers. The problem arises when customers are close 

to each other or when their demands are large. A common approach consists of solving this problem by 

combining vehicle routing heuristics with bin packing routines in order to assign routes to vehicles. We 

compare this approach with a heuristic that makes use of specific operators designed to tackle the routing 

and the assignment aspects of the problem simultaneously. Two large neighborhood search heuristics 

are proposed to perform the comparison. We provide insights into the configuration of the proposed 

algorithms by analyzing the behavior of several of their components. In particular, we question the impact 

of the roulette wheel mechanism. We also observe that guiding the search with an objective function 

designed for the multi-trip case is crucial even when exploring the solution space of the vehicle routing 

problem. We provide several best known solutions for benchmark instances. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The multi-trip vehicle routing problem (MTVRP) is a variant of 

the vehicle routing problem (VRP) in which each vehicle can per- 

form one or more trips, also called routes , during the same plan- 

ning period. The set of routes performed by a given vehicle consti- 

tutes a tour whose total duration cannot exceed a given time limit. 

The MTVRP arises when the demands of the customers are large 

compared to vehicle capacities or when the distances are relatively 

short. In food distribution systems, drivers sometimes perform two, 

three or even more delivery routes during the same working day. 

It is common to solve the MTVRP by combining VRP and bin 

packing (BP) algorithms ( Fleischmann, 1990; Olivera & Viera, 2007; 

Petch & Salhi, 2004; Salhi & Petch, 2007; Taillard, Laporte, & Gen- 

dreau, 1996 ). Vehicle routes are first obtained by applying VRP al- 

gorithms. These routes are then assigned to a fleet with a lim- 

ited number of vehicles, generally by applying BP techniques: each 

route is viewed as an item whose size corresponds to its duration 

and each vehicle as a bin of capacity equal to the maximum al- 

lowed tour duration. 

The main contribution of this work is to propose local search 

operators specifically designed for multi-trip variants of the VRP. 
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They stem from classical VRP operators and take into consideration 

the routing and route assignment aspects of multi-trip problems. 

Our aim is to compare the performance of algorithms that incor- 

porate these multi-trip operators with those that treat the rout- 

ing and the packing subproblems separately. Two adaptive large 

neighborhood search (ALNS) algorithms ( Pisinger & Ropke, 2007; 

Ropke & Pisinger, 2006a,b ) are described: the ALNS with multi- 

trip operators (ALNSM) and the ALNS combined with BP (ALNSP). 

Both algorithms are tested on the benchmark instances of Taillard 

et al. (1996) . The ALNSM yields very good results but is outper- 

formed by the ALNSP which produces 10 new best known MTVRP 

solutions. 

As a second contribution, we analyze the behavior of various 

ALNS components and we describe the interactions between some 

of these. Every implementation option that was considered dur- 

ing the design phase of the algorithms is given, not only the most 

efficient one, thus providing insights into the global behavior of 

the proposed ALNS metaheuristics. We use the irace package 

( López-Ibáñez, Dubois-Lacoste, Stützle, & Birattari, 2011 ), an auto- 

matic configuration tool, not only as a fine-tuning engine, but also 

as a means to gain meaningful algorithmic insights. 

Section 3 describes the MTVRP along with some notations. 

Section 4 presents the specific multi-trip operators. Section 5 de- 

tails the ALNSM and ALNSP implementations. The results are then 

presented in Section 6 , along with further experiments about 

algorithm components in Section 6.4 . Section 7 presents the 

conclusions. 
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2. Literature review 

Fleischmann (1990) was the first to address the MTVRP. He 

combined a modified savings heuristic with a BP heuristic. Taillard 

et al. (1996) later proposed a three-phase method. First, a large 

number of VRP routes are generated by constructing and modifying 

VRP solutions using a tabu search (TS) algorithm. Several VRP so- 

lutions are then built based on the routes constructed in this first 

step. Finally, a BP procedure is applied to each VRP solution in an 

attempt to generate feasible MTVRP solutions. In Brandão and Mer- 

cer (1998) , a constructive procedure sequentially builds an MTVRP 

solution that may involve overtime. A TS procedure then refines 

this solution by applying classical VRP operators. Petch and Salhi 

(2004) proposed a multi-phase construction algorithm in which 

VRP solutions are iteratively created and refined. Each is tentatively 

transformed through a BP procedure until a feasible MTVRP solu- 

tion is found or a stopping criterion is satisfied. Salhi and Petch 

(2007) applied a genetic algorithm in which chromosomes rep- 

resent ordered circular sectors. A savings heuristic is applied to 

solve VRPs within the circular sectors, and a BP heuristic then cre- 

ates MTVRP solutions out of the routes produced by the savings 

procedure. Olivera and Viera (2007) proposed an adaptive mem- 

ory programing (AMP) procedure combining TS and a BP heuris- 

tic. A memory of routes is initialized by constructing VRP solu- 

tions by means of the sweep algorithm. The algorithm then iter- 

atively creates and improves new VRP solutions from routes that 

are randomly chosen in the memory. These VRP solutions are im- 

proved by applying a TS procedure. A BP heuristic is used at each 

iteration of the TS heuristic in order to tentatively produce a fea- 

sible MTVRP solution. The new routes are added to the adaptive 

memory and sorted according to the quality of the MTVRP so- 

lution to which they belong. Cattaruzza, Absi, Feillet, and Vidal 

(2014) provided state-of-the-art results for the MTVRP. These au- 

thors proposed a memetic algorithm in which each chromosome 

defines a customer sequence. A modified split procedure ( Prins, 

2004 ) partitions the customer sequences to tentatively obtain an 

MTVRP solution. The authors described a second version of their 

algorithm in which a local search procedure reassigns routes to ve- 

hicles while at the same time performing a VRP move. Recently, 

Mingozzi, Roberti, and Toth (2013) developed an exact algorithm 

for the MTVRP which yielded an optimal solution for 42 out of 

the 106 benchmark instances of Taillard et al. (1996) . Their model 

combines a partitioning formulation with valid inequalities. For an 

extensive review of MTVRP variants, the interested reader is re- 

ferred to Cattaruzza, Absi, and Feillet (2016) . 

3. Problem description and notations 

Let G ( V , E ) be a complete undirected graph where V = { 0 , . . . , n } 
is the set of nodes and E = { (i, j) | i, j ∈ V, i < j} is the set of edges. 

Each node i = 1 , . . . , n represents a customer, while node i = 0 rep- 

resents the depot. With each customer i = 1 , . . . , n is associated a 

demand d i that must be satisfied by exactly one delivery (i.e., split 

deliveries are not allowed). A fleet of m identical vehicles is based 

at the depot. The travel time on edge ( i , j ) ∈ E is t ij . Each vehi- 

cle k = 1 , . . . , m has a limited capacity Q and a maximum allowed 

working duration T max , and must perform a tour T k made up of a 

set of routes starting and ending at the depot. The total demand of 

the customers served by any route of T k must not exceed Q , and 

the time needed to perform T k must not exceed T max . The objec- 

tive is to determine a set of tours minimizing the total travel time 

while satisfying the constraints. 

The metaheuristics that we have developed work on a relaxed 

version of the MTVRP called the R-MTVRP, in which the tour du- 

ration constraints are not considered. In the following, we denote 

MTVRP solutions by S, and R-MTVRP solutions by ˆ S . If at least one 

vehicle of an R-MTVRP solution 

ˆ S travels for a duration that ex- 

ceeds T max , then 

ˆ S contains some overtime. The overtime of vehicle 

k , denoted by O k , is defined as O k = max { 0 , D k − T max } , where D k is 

the total duration of tour T k . The total overtime of ˆ S is defined as 

O ˆ S = 

∑ 

k =1 , ... ,m 

O k . The objective function of the R-MTVRP includes 

the total travel time, as well as the penalized overtime. The as- 

sociated penalization factor will be introduced later on. R-MTVRP 

solutions that do not contain overtime are also feasible MTVRP 

solutions. 

Solutions to the well-known capacitated vehicle routing prob- 

lem (CVRP) are used to explore the solution space during the ex- 

ecution of the ALNSP heuristic. The CVRP is defined on the same 

graph G ( V , E ) as the MTVRP. The fleet size is unlimited, while each 

vehicle having a capacity Q can perform only one route. The ob- 

jective function to be minimized is the total travel time. No cost 

is incurred for using the vehicles, i.e., the number of routes has 

no impact on the objective function. Let X be the set of routes 

that constitute a feasible CVRP solution. In order to transform X 

into an R-MTVRP solution, each route of X has to be assigned to 

one of the m available vehicles. All assignments of the routes in 

X that satisfy the MTVRP tour duration constraints yield MTVRP 

solutions that are equivalent in terms of their objective function 

value since they have the same duration and contain no overtime. 

Finding such a feasible assignment is equivalent to solving a BP 

problem where each route is an item with a size corresponding to 

its duration, and each vehicle is a bin of capacity equal to the max- 

imum allowed tour duration. Since the CVRP objective function is 

simply the total travel time, if X is an optimal CVRP solution, then 

each feasible assignment of its routes provides an optimal MTVRP 

solution. 

Table 1 presents the recurring notations of this paper. 

4. Specific local search operators 

The purpose of the proposed multi-trip operators is to manage 

the routing and the assignment aspects of the problem simulta- 

neously, instead of treating them independently. In MTVRP or R- 

MTVRP solutions, any reordering of the routes of a given tour T k 
leaves its total duration and overtime unchanged. However, the op- 

erators presented below are not designed to treat routes as sepa- 

rate entities. Instead, they treat any tour T k as a giant tour made 

up of the routes of vehicle k , i.e., an ordered sequence of routes. 

More precisely, the representation of a tour starts with an origin 

depot, ends with a destination depot, and contains the customer 

sequence of each of its routes. Each of these customer sequences 

is separated by a depot that we call an “internal depot”. In the fol- 

lowing, routes in T k are said to be consecutive if their respective 

customer sequences are only separated by one internal depot in 

the giant tour representation of T k . 

4.1. Removal and insertion operators 

The specific removal and insertion operators presented below 

adapt to the MTVRP context destroy-and-repair heuristics (simi- 

lar to those used by Ropke and Pisinger (2006a) and Pisinger and 

Ropke (2007) ). 

4.1.1. Inserting a customer in a multi-trip context 

Let ˆ S be a partial solution of a given R-MTVRP. In 

ˆ S , a sequence 

of nodes (depots and customers) forming a tour T k is known for 

each available vehicle k , but some of the customers are not as- 

signed to any vehicle. Some of the vehicles may also be empty 

(the representation of the associated tour contains only the origin 

and the destination depots). The solution 

ˆ S needs to be repaired 

by inserting in it the unrouted customers. Let v i and v i +1 be two 

consecutive nodes of a tour T k = ( . . . , v i , v i +1 , . . . ) in 

ˆ S . We consider 
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