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a b s t r a c t

Convex vector (or multi-objective) semi-infinite optimization deals with the simultaneous minimization of

finitely many convex scalar functions subject to infinitely many convex constraints. This paper provides char-

acterizations of the weakly efficient, efficient and properly efficient points in terms of cones involving the

data and Karush–Kuhn–Tucker conditions. The latter characterizations rely on different local and global con-

straint qualifications. The results in this paper generalize those obtained by the same authors on linear vector

semi-infinite optimization problems.
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1. Introduction

We consider convex optimization problems of the form

P : “ min ” f (x) = ( f1(x), . . . , fp(x)) s.t. gt(x) ≤ 0, t ∈ T, (1)

where x ∈ Rn (the space of decisions), f(x) ∈ Rp (the objective space),

the index set T is a compact Hausdorff topological space, fi : Rn → R

is a convex function, i = 1, . . . , p, gt is convex for each t ∈ T, and the

function (t, x) �→gt(x) is continuous on T × Rn. The continuity of f is

consequence of the assumptions on its components f1, . . . , fp. The

model (1) includes ordinary convex (scalar and vector) optimization

problems just taking the discrete topology on the (finite) index set.

Since the optimality theory for this class of problems has been thor-

oughly studied, we assume in the sequel that T is infinite. When p ≥
2, P is a convex vector semi-infinite optimization (SIO in brief) prob-

lem; otherwise, P is a convex scalar SIO problem. Replacing in (1) the

space of decisions Rn by an infinite dimensional space (typically a lo-

cally convex Hausdorff topological vector space) one gets a convex

(scalar or vector) infinite optimization (IO in short) problem.

We assume throughout the paper that p ≥ 2 and the feasible set

of P, denoted by X, is non-empty. Obviously, X is a closed convex set

whereas its image by the vector-valued objective function f (X) ⊂ Rp

is possibly non-convex and non-closed. The vector SIO problem P can

be reformulated as a vector optimization problem with the single
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convex constraint function ϕ(x) := max t ∈ Tgt(x), called marginal func-

tion:

P : “ min ” f (x) = ( f1(x), . . . , fp(x)) s.t. ϕ(x) ≤ 0.

Throughout the paper we use the following notation. Given x, y ∈
Rm, we write x�y (x < y) when xi ≤ yi (xi < yi, respectively) for all

i = 1, . . . , m. Moreover, we write x ≤ y when x�y and x 	= y.

An element x ∈ X is said to be efficient (weakly efficient) if there

is no x̂ ∈ X such that f (x̂) ≤ f (x) ( f (x̂) < f (x), respectively). There

are many notions of proper efficiency in the literature, as those in-

troduced by Geoffrion, Benson, Borwein and Henig. Since P is convex,

all these concepts are equivalent to the proper efficiency in terms of

linear scalarization (see, e.g., Ehrgott, 2005), so that we recall only

Geoffrion’s definition: a feasible point x ∈ X is said to be properly effi-

cientif there exists ρ > 0 such that, for all i = 1, . . . , p and x̂ ∈ X satis-

fying fi(x̂) < fi(x), there exists j ∈ {1, . . . , p} such that f j(x̂) > f j(x)

and
fi(x) − fi(x̂)

f j(x̂) − f j(x)
≤ ρ.

We denote by XpE, XE, and XwE the sets of properly efficient points,

efficient points, and weakly efficient points of P, respectively. Obvi-

ously, XpE ⊂ XE ⊂ XwE , with X = XwE whenever one component of f is

identically zero, and X = XpE in the trivial case that f is the null func-

tion. Moreover, it is known that f(XpE) is dense in f(XE) (Hartley, 1978;

see also Ehrgott, 2005, Theorem 3.17).

Given a (possibly non-convex) vector SIO problem

P : “ min ” f (x) s.t. x ∈ X,

x ∈ X is said to be locally (properly, weakly) efficient solution of P if

there exists a neighborhood N of x such that x is (properly, weakly)

efficient solution of

PN : “ min ” f (x) s.t. x ∈ X ∩ N .
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Global and local concepts coincide in convex vector SIO thanks

to the convexity of X and the componentwise convexity of f. For in-

stance, if x ∈ X is not weakly efficient there exists x̂ ∈ X such that

f (x̂) < f (x); since f (λx̂ + (1 − λ)x) < f (x) for all λ ∈ ]0, 1[, with

λx̂ + (1 − λ)x ∈ X ∩ N for λ sufficiently small, x cannot be a locally

weakly efficient solution of P. The argument is similar for efficient

solutions while the equivalence can easily be proved for proper effi-

cient solutions via scalarization. For this reason, in convex vector SIO,

we can characterize the (proper, weak) efficiency on the basis of lo-

cal information. The known tests for non-linear vector optimization

classify a given x ∈ X as locally (properly, weakly) efficient solution

or not through conditions involving subsets of the objective space Rp

or suitable scalarizations of P (see, e.g., Boţ, Grad, & Wanka, 2009;

Ehrgott, 2005).

In this paper, on convex vector SIO, we give conditions for x ∈ XpE ,

x ∈ XE , and x ∈ XwE which are expressed in terms of convex cones

contained in the decision space Rn or in terms of the existence of

Karush–Kuhn–Tucker (KKT in short) multipliers which can be com-

puted from x and the data describing P.

As a general rule, to obtain a checkable necessary optimality con-

dition for a given constrained optimization problem, one needs to

assume some property of the constraint system called constraint

qualification (CQ in short). We consider in this paper four CQs which

extend those used in our previous paper (Goberna, Guerra-Vazquez,

& Todorov, 2013) on constraint qualifications in linear vector SIO. The

strongest one is the natural extension of the CQ introduced by M.

Slater in a seminal work on scalar optimization published in 1950,

which was adapted to linear scalar SIO by Charnes, Cooper and Kor-

tanek in the 1960s. A weaker CQ for convex scalar SIO has been pro-

posed in Li, Zhao, and Hu (2013). The locally Farkas–Minkowski CQ

was first defined in Puente and de Serio (1999) for linear scalar SIO,

and then extended to convex scalar SIO in Goberna and López (1998)

and to convex scalar IO in Dinh, Goberna, López, and Son (2007).

CQs weaker than the locally Farkas–Minkowski one have been in-

troduced in Li et al. (2013), for convex SIO problems, and in Li, Ng,

and Pong (2008), for convex IO problems. The local Slater CQ, intro-

duced in Section 3 of this paper, seems to be new while the extended

Kuhn–Tucker CQ was introduced in Tapia and Trosset (1994) for con-

vex IO as an extension of that used by H.W. Kuhn and A.W. Tucker

in Kuhn, Tucker, and Newman (1951) for ordinary non-linear opti-

mization problems. Section 1 of Li et al. (2008) reviews the state of

the art on CQs in convex scalar optimization. Some of the previous

works also deal with the so-called regularity (or closedness qualifica-

tion) conditions involving the objective function and the constraints

(see, e.g., the recent papers Sun, Li, and Zhao (2013) and Sun (2014),

dealing with IO problems with DC objective function and convex con-

straints, and references therein).

The stability of linear and non-linear scalar SIO has been in-

vestigated since the last 1980s from different perspectives, e.g., the

pseudo-Lipschitz property and the lower and upper semicontinu-

ity of the efficient set mapping under different types of perturba-

tions, well-posedness, and generic stability (see, e.g., Chuong, Huy,

& Yao, 2009, 2010a, 2010b; Fan, Cheng, & Wang, 2012; Todorov, 1996;

Todorov & Tzeng, 1994), while the existing literature on optimality

conditions for vector SIO and vector IO problems is surprisingly lim-

ited.

The main antecedent of this paper is Goberna et al. (2013), on lin-

ear vector SIO, which provides characterizations of the weakly ef-

ficient, efficient and properly efficient solutions in terms of cones

involving the data and KKT conditions. In Caristi, Ferrara, and

Stefanescu (2010), on a class of vector SIO problems involving differ-

entiable functions whose constraints satisfy certain invex-type con-

ditions and are required to depend continuously on an index t rang-

ing on some compact topological space T, KKT conditions for x ∈
XpE , x ∈ XE and x ∈ XwE are given. In Guerra-Vazquez, Rückmann, Xu,

Teo, and Zhang (2014), on non-convex differentiable vector SIO, the

authors discuss constraint qualifications as well as necessary and suf-

ficient conditions for locally weakly efficient points and present op-

timality conditions for properly efficient points in the senses of Ge-

offrion and of Kuhn et al. (1951). Finally, in Chuong and Kim (2014),

on non-smooth vector IO problems posed on Asplund spaces whose

index set T has no topological structure, necessary conditions as well

as sufficient conditions for weakly efficient solutions are obtained ap-

pealing to the machinery of non-smooth analysis and a certain CQ, for

non-convex systems introduced in Chuong et al. (2009), which can be

seen as an extension of the so-called basic CQs introduced in Li and

Ng (2005), for scalar IO problems posed in Banach spaces.

The convex vector SIO problems considered in this paper arise in

a natural way in robust linear vector optimization. Indeed, consider

an uncertain linear vector optimization problem

(LP) “ min ” (c�
1 x, . . . , c�

p x) s.t. a�
t x ≥ bt , t ∈ T,

where T is a finite set, ci ∈ Ui ⊂ Rn,i = 1, . . . , p, and (at , bt) ∈ Vt ⊂
Rn+1, t ∈ T. The uncertainty sets Ui, i = 1, . . . , p are arbitrary non-

empty sets while Vt , t ∈ T are non-empty compact sets. The robust

minmax counterpart of (LP) (term coined in Ehrgott & Idec (2014)) en-

forces feasibility for any possible scenario and assumes that the cost

of any (robust) feasible decision will be the worst possible, i.e., the

problem to be solved is

“ min ”

(
max
c1∈U1

c�
1 x, . . . , max

cp∈Up

c�
p x

)
s.t. a�

t x ≥ bt ,∀(at , bt) ∈ Vt , t ∈ T.

(2)

Observe that (2) is as (1), just taking fi(x) = maxci∈Ui
c�

i
x (i.e., the

support function of Ui), i = 1, . . . , p, and expressing the constraints

either as b − a�x ≤ 0 for all (a, b) ∈ ⋃
t∈T

Vt (a compact index set) or

as gt(x) ≤ 0, with gt(x) = max{b − a�x : (a, b) ∈ ⋃
t∈T

Vt} for all t ∈ T (a

finite index set equipped with the discrete topology).

This paper is organized as follows. Section 2 recalls basic con-

cepts of convex analysis to be used later, applying some of them to

characterize the so-called subdifferential cone and its interior, and to

describe the relationships between several types of “tangent” cones

which are closely related with the negative polar of the active cone.

Section 3 extends to convex vector SIO four out of six constraint qual-

ifications introduced in Goberna et al. (2013) for linear vector SIO. The

two exceptions, the Farkas–Minkowski and the local polyhedral con-

straint qualifications, have not been considered in this paper as they

are too strong in the convex framework. For methodological reasons,

we give simple direct proofs of the lemmas in Section 3 even though

most of them could be also obtained via linearization. The auxiliary

Section 4 establishes different characterizations of the sets XpE, XE,

and XwE in terms of the subdifferential cone; these characterizations

do not involve constraint qualifications, i.e., they are independent of

the given representation of the closed convex feasible set X. Finally,

Section 5 combines the results in Sections 3 and 4 to get characteri-

zations of XpE, XE, and XwE in terms of KKT multipliers. Here the proofs

are necessarily direct as the objective functions are not linear. These

results are applied to the robust linear vector optimization problem

(LP).

2. Preliminaries

We start this section by introducing the necessary notations and

concepts. Given Z ⊂ Rn, intZ, clZ, and bdZ denote the interior, the

closure, and the boundary of Z, respectively. The scalar product of

x, y ∈ Rn is denoted by x�y, the Euclidean norm of x by ‖x‖, the

corresponding open ball centered at x and radius ε > 0 by B(x, ε),

and the zero vector by 0n. We also denote by conv Z the convex

hull of Z, while cone Z := R+convZ denotes the convex conical hull

of Z ∪ {0n}. If Z is a convex cone, its positive (negative) polar cone
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