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a b s t r a c t

Multistage stochastic programs show time-inconsistency in general, if the objective is neither the expectation

nor the maximum functional.

This paper considers distortion risk measures (in particular the Average Value-at-Risk) at the final stage

of a multistage stochastic program. Such problems are not time consistent. However, it is shown that by

considering risk parameters at random level and by extending the state space appropriately, the value func-

tion corresponding to the optimal decisions evolves as a martingale and a dynamic programming principle is

applicable. In this setup the risk profile has to be accepted to vary over time and to be adapted dynamically.

Further, a verification theorem is provided, which characterizes optimal decisions by sub- and supermartin-

gales. These enveloping martingales constitute a lower and an upper bound of the optimal value function.

The basis of the analysis is a new decomposition theorem for the Average Value-at-Risk, which is given

in a time consistent formulation.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

Coherent risk measures have been introduced by Artzner et al. in

the pioneering papers (Artzner, Delbaen, & Heath, 1997) and (Artzner,

Delbaen, Eber, & Heath, 1999). The set of axioms, which are pro-

posed there, is widely accepted nowadays. Approximately 10 years

later the same group of authors considered risk measures again in a

multistage framework in Artzner, Delbaen, Eber, Heath, and Ku

(2007). These authors notice that the Average Value-at-Risk, the most

important risk measure, is not time consistent in the sense speci-

fied in their paper. Importantly, they relate time-consistency to the

fundamental dynamic programming principle, known as Bellman’s

principle (cf. Fleming & Soner, 2006).

For giving a precise definition of time-consistency (time inconsis-

tency, respectively) one has to distinguish between time-inconsistent

risk measures and time-inconsistent decision problems.

Artzner et al. consider the following notion of time-inconsistency

in Artzner et al. (2007): a risk measure ρ applied to a random vari-
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able Y is said to be time-consistent, if knowing the value ρ(Y|F)
for all conditional distributions for any conditioning σ -algebra F is

sufficient to calculate its unconditional value ρ(Y). Their counterex-

ample, showing that the Average Value-at-Risk is time-inconsistent

in this sense, is reconsidered and resolved in this paper below

(Fig. 2).

The notion of time-consistent decision problems is related, but

slightly different: a multistage stochastic decision problem is time-

consistent, if resolving the problem at later stages (i.e., after observing

some random outcomes), the original solutions remain optimal for the

later stages.

Shapiro (2009, p. 144), referring to a tree-structured problem, re-

marks that for time-consistency of a problem the solution at each

stage is not allowed to depend on random parameters, which cannot

follow this stage (i.e., in the language of trees, lie in other subtrees):

“It is natural to consider the conceptual requirement that an optimal

decision at state ξt should not depend on states which do not follow

ξt , i.e., cannot happen in the future. That is, optimality of our decision

at state ξt should only involve future children nodes of state ξt . We

call this principle time consistency.”

Carpentier, Chancelier, Cohen, de Lara, and Girardeau (2012,

p. 249) formulate the property as follows: “The sequence of opti-

mization problems is said to be dynamically consistent if the optimal

strategies obtained when solving the original problem at time t0 re-

main optimal for all subsequent problems. In other words, dynamic
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Fig. 1. Counterexample: the Average Value-at-Risk, conditioned on the subtrees, is higher on the left tree. But the Average Value-at-Risk at the initial stage is higher on the right tree.

consistency means that strategies obtained by solving the problem at

the very first stage do not have to be questioned later on.”

In order to enforce time-consistency for decision problems sig-

nificant efforts and investigations have been initiated to identify

classes of multiperiod risk measures which lead to time-consistency

and allow stagewise decompositions. To this end, nested condi-

tional risk measures have been proposed by Shapiro and Ruszczyński

(Ruszczyński, 2010; Ruszczyński & Shapiro, 2006; Shapiro, 2009) (cf.

as well Shapiro, 2012) and the recent paper by Carpentier et al. (2012).

Here, we follow a different path.

First, we will maximize the acceptability rather than minimize

risk. This is for ease of presentation of the results. Since acceptability

measures can be seen as the negatives of risk measures this is no

restriction. Secondly, we stick to the problem of maximizing the ac-

ceptability of the final outcome, where the acceptability is measured

by a plain distortion measure, not by a nested one. We believe that

nested risk or acceptability measures are difficult to interpret and are

not what decision makers would understand under multistage risk or

acceptability.

As a measure for acceptability we use initially the Average

Value-at-Risk (AV@R) defined below in (1), and explain later how

the results extend to general distortion measures. As illustration of

time-inconsistency of decision problems involving AV@R consider the

example displayed in Fig. 1. Suppose that the decision has to made,

which out of the two tree processes is to be selected for the criterion

to maximize the final AV@R10 percent. It can be easily seen that looking

at the conditional AV@R’s at intermediate time 1, the left tree has to

be preferred to the right one. Looking at the same criterion, but at

time 0, the preference is opposite. Therefore, this introductory exam-

ple confirms the fact that in general the maximization of the AV@R of

the final outcome leads to time-inconsistency of decisions.

This paper is based on a new decomposition of the AV@R and

related measures. The decomposition measures risk on conditional

level only, and it recovers the initial risk measure by collecting the

conditional risk measures via an expectation. In this setup the risk

profile has to be adapted conditionally, such that the conditional risk

profile is not static any longer.

Additional information changes the perception of risk. The adap-

tive choice of appropriate measures of risk complies with the course

of action of a risk manager who adjusts the preferences whenever ad-

ditional information is available. The decision maker is less reluctant,

if an observation reveals that the future will be bright, but conversely

she or he will be more strict if losses at the end become more likely.

This gives rise to defining an extended notion of a conditional risk

measure, which is not just the same risk measure applied to condi-

tional distributions, but which may be a different functional for dif-

ferent conditional distributions, depending on its respective history.

By involving adapted conditional risk measures it is possible to re-

cover dynamic programming principles for multistage stochastic pro-

grams. Moreover verification theorems, which are central in dynamic

control, are established here for multistage stochastic programs. The

dynamic programming equations presented are based on the dual

representation of the risk measure, and different to those provided

by Shapiro (2009). The presented approach allows a characterization

of optimal solutions of a multistage stochastic program in terms of

enveloping sub- and supermartingales. It is shown that a solution

of a multistage problem evolves as a martingale over time, where

different risk measures are encountered at each stage.

Dynamic programming equations notably cannot remove the time

inconsistency, which is inherent to these problems. But these equa-

tions come along with verification theorems, and it is their purpose

to enable checking, if a given policy is optimal. By assessing the en-

veloping sub- and supermartingales it is moreover possible to provide

upper and lower bounds, such that the quality of a given multistage

policy can be assessed with these sub- and supermartingales as well.

1.1. Outline of the paper

Section 2 provides the setting for the Average Value-at-Risk, as this

risk measure is basic for the presentation. Next, the conditional ver-

sion is considered. The decomposition theorem, the central statement

of this paper, is contained in Section 4 and Section 5 characterizes its

properties. Section 6 introduces the multistage optimization prob-

lem. Section 7 exposes the dynamic programming formulation, while

the subsequent Section 8 introduces the martingale representations,

which are in line with dynamic programming.

2. Representations of the genuine risk measure

We reduce the conceptual description of the problem to the Aver-

age Value-at-Risk, AV@R. This reduction is justified, as more general

coherent risk measures—distortion risk measures—are composed in

a linear way of Average Value-at-Risks at different levels. Further,

Kusuoka’s theorem provides all version independent (also known as

law invariant) risk measures via distortion risk measures (cf., for ex-

ample, Pflug & Römisch, 2007), such that this reduction is without

loss of generality.

The Average Value-at-Risk is considered in its concave variant in-

volving the lower quantiles of the distribution function FY of the ran-

dom variable Y ,

AV@Rα(Y) := 1

α

∫ α

0

F−1
Y (u)du (0 < α ≤ 1), (1)

where α is called level. In this setting AV@R accounts for profits, which

are subject to maximization. Throughout this paper we shall assume

that the profit variable Y is a R-valued random variable defined on

a general, filtered probability space (�, (Ft)t∈{0,1,...T}, P). For conve-

nience of presentation we assume that Y ∈ L∞(FT , P) (L1(FT , P) could

be chosen in many, but not in all situations).

The dual representation of the Average Value-at-Risk at level α is

AV@Rα (Y) = inf
{
E

(
YZ

)
: 0 ≤ Z, αZ ≤ 1 and E

(
Z
) = 1

}
, (2)

where the expectation is with respect to the measure P, the infimum

in (2) is among all positive random variables Z ≥ 0 with expectation

E(Z) = 1 (i.e., Z are densities), satisfying the additional truncation

constraint αZ ≤ 1, as indicated. The infimum is attained if α > 0, and

in this case the optimal random variable Z in (2) is coupled in an

anti-monotone way with Y (cf. Nelsen, 1998).
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