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monotone and isotone mappings in partially ordered metric spaces are proved. Moreover, the equiv-
alence between unidimensional and multidimensional fixed point theorems is investigated.
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1. Introduction

Following paper [1], the problem of existence of a fixed point
for contraction type mappings in partially ordered metric
spaces has been considered a lot (see, e.g., [2-22] and the
related references therein). Some fixed point theorems were
proved in these papers and they are usually applied in dis-
cussing the existence and uniqueness of solution to matrix equa-
tions, periodic boundary value problems and nonlinear integral
equations.
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Recently, Roldan et al. [17] introduced the notion of coin-
cidence point between mappings in any number of variables
and extended several special notions of, so called, coupled,
tripled, quadrupled and multidimensional fixed/coincidence
points appeared in the literature see, for example, [3], [8],
[14], [15], respectively. Results in [17] also extend some fixed
points ones in the framework of partially ordered complete
metric spaces. In order to guarantee the existence of coinci-
dence point the authors of [17] constructed some Cauchy se-
quences using the properties of mixed monotone mappings
and contractive conditions. The idea was used in a lot of pa-
per (see, e.g., [16], [18], [19]). To prove that more than one
sequences are simultaneously Cauchy’s, seems not so easy. It
is also known that the fixed point problems for isotone map-
pings are easier than that of mixed monotone mappings. Wang
[21] obtained some multidimensional fixed point theorems for
isotone mappings and extended some of the results in coupled,
tripled, quadrupled and multidimensional fixed/coincidence
points for mixed monotone and non-decreasing mappings in

S1110-256X(15)00057-7 Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.joems.2015.07.006


http://dx.doi.org/10.1016/j.joems.2015.07.006
http://www.etms-eg.org
http://www.elsevier.com/locate/joems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2015.07.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wangshuang19841119@yahoo.com
mailto:wangshuang19841119@163.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.joems.2015.07.006

Some fixed point theorems for G-isotone mappings in partially ordered metric spaces 411

partially ordered complete metric spaces. She also gave a
simple and unified approach to coupled, tripled, quadrupled
and multidimensional fixed point theorems for mixed mono-
tone mappings.

Motivated and inspired by the above results, we obtain some
new fixed point theorems for G-isotone mappings and investi-
gate the equivalence between unidimensional and multidimen-
sional fixed point theorems.

2. Preliminaries

Let n e N, X be a non-empty set and X" be the Cartesian
product of n copies of X. For brevity, g(x), (x1, X2, ..., Xu),
D1, Y25 -5 Vn)s (215 225 - o5 Z), (V1, Vo, ..o, vy) and (x(]), xé, e,
x;) will be denoted by gx, X, Y, Z, V and X, respectively.

Let {4, B} be a partition of the set A, ={1,2,...,n},
that is, AUB=A, and ANB=0, Que={c: A, —> A,:
o(4)CAand o(B) S Bland @, ;,={0: A, —> A, :0(4) C
Bando (B) C A4}. Letoy, 03, ..., 0, be n mappings from A, into
itself. If (X, <) is a partially ordered space, y, v € X andi € A,
we use the next notation from [17]:

ifi e A,

y =,
ifi € B. (M

yive { Y=,
If elements x, y of a partially ordered set (X, <) are comparable
(i.e. x < y or y < x holds) we will write x &~ y. The product space
X" is endowed with the following natural partial order: for Y, V'
e X"

Y§HV<:>yijfv[,ieA,,. (2)
The mapping p, : X" x X" — [0, +00), given by:

pn(X,Y) = max d(x;, yi), (3)

defines a metric on X”. We denote I" the set of all continuous
and strictly increasing functions ¢: [0, co) — [0, c0), and ¥ the
set of all functions ¥: [0, c0) — [0, 00), such that lim, , . (7) >
Oforeveryr>0and ¥ (1) =0 <= =0.

Definition 2.1 ([11]). A triple (X, d, <) is called an ordered met-
ric space if (X, d) is a metric space and (X, <) is a partially or-
dered set.

Definition 2.2 ([17]). Let g : X — X be a mapping. If (X,
d, <) is an ordered metric space, then X is said to have the
sequential g-monotone property if it satisfies the following
properties:

(1) If (x)men 1s a non-decreasing sequence and lim,,_,
Xm = X, then gx,,< gx for all m € N.

(i1) If (¥m)men 1s @ non-increasing sequence and lim,,,_, o y,, =
», then gy, > gy for all m € N.

If g is the identity mapping, then X is said to have the sequential
monotone property (see [17]) and (X, d, <) is said to be regular
(see [22]).

Definition 2.3 ([16]). Let F: X" — Xand g: X — X be two map-
pings. A point (x1, X2, ..., X,) € X" is a Y-coincidence point of
Fand gif

F(Xn[a), Xoi(2)s «+ s xa[(n)) = gX;

for i € A,. If g is the identity mapping on X, then
(X1, X2, ...,x,) € X" is called a Y-fixed point of the
mapping F.

Definition 2.4 ([19]). Let (X, d, <) be an ordered metric space.
The mappings F : X" — X and g : X — X are said to be
O-compatible if, for all sequences {x!},u=0, (X2 }nz0,---»
{x"}u=0 C X such that {gx!},=0, {&x2 }ms0s - -, (@X" ) im0 are
monotone and the following limit exists: for all 7,

i PO ) = i e X,
we have
”}Elc}od(gF(x:Zm’ xz;(Z)’ o x:;:‘(”))7

Fgxg™, expi®, ... gxi®)) =0

for all 7.

Definition 2.5 ([17]). Let (X, <) be a partially ordered space,
and F: X" - X and g : X — X be two mappings. It is
said that F has the mixed g-monotone property if F is g-
monotone nondecreasing in arguments with indices in 4 and
g-monotone nonincreasing in arguments with indices in B, i.e.,

forall x;, x5,...,x,,»,z€ X andeachi e {l,...,n},
g 2 g=FX, . Xin, Y Xl - X))
S F (X, Ximt, 20 Xig 1y o5 X))

Definition 2.6 ([20]). Let (X", <) be a partially ordered set, and
T and G self-mappings of X”. It is said that 7T is a G-isotone
mapping if, for any Y, ¥, € X"

G(Y) =, G(Y) = T (YY) =, T(Y2).

Definition 2.7 ([20]). An element Y € X" is called a coincidence
point of the mappings 7: X" - X"and G: X" — X" if T(Y) =
G(Y). Furthermore, if 7(Y) = G(Y) = Y, then is said that Y
is a common fixed point of 7and G.

Remark 2.8. Note that if G = Iy» in Definitions 2.6 and 2.7,
then T is an isotone mapping and Y is a fixed point of T
(see [21]).

Definition 2.9. C a family functions /: [0, 0c0)> — R is called
C-class if it is continuous and satisfies following axioms:

(D fs, 1) <53
(2) f(s,t) = s implies that either s = 0 or = 0;

foralls, ¢ € [0, c0).

Example 2.10. The following functions f: [0, c0)> — R are ele-
ments of C. For each s, ¢ € [0, 00),

() fs.)=ks,0<k <1, f(s,1) =5 =5=0;

Q) f=s—1t f(s)=s=>1=0;

Q) fls)=3E fs)=s=1=0;

4 f(Svt)=l%_t,f(s,t)=S:>S=00rt=0;

() fls,0)=log%,a> 1, f(s) =s=s=00r1=0;

©) [ )= G+D()—L1>1,f(s1)=s=1=0;

(7) f(s, 1) =slog,,,a,a>1,f(s,t)=s=s=00rt=0.

Remark 2.11. Functions of C-class is a natural generaliza-
tion for Banach contraction, as that can see in above example
number (1).
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