

Egyptian Mathematical Society Journal of the Egyptian Mathematical Society

> www.etms-eg.org www.elsevier.com/locate/joems

Original Article

On projection-invariant submodules of QTAG-modules

W

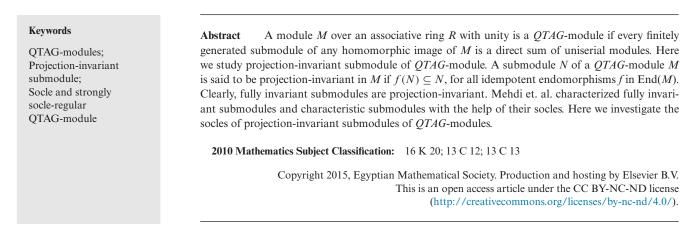
Fahad Sikander^{a,*}, Alveera Mehdi^b, Sabah A.R.K. Naji^c

^a College of Computation and Informatics, Saudi Electronic University, Jeddah 23442, Saudi Arabia

^bDepartment of Mathematics, Aligarh Muslim University, Aligarh 202 002, India

^cDepartment of Mathematics, Al-Bayda University, Al-Bayda, Yemen

Received 14 March 2014; revised 27 October 2014; accepted 25 January 2015 Available online 11 April 2015



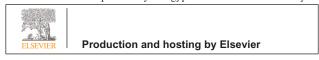
1. Introduction and preliminaries

All the rings *R* considered here are associative with unity and modules *M* are unital *QTAG*-modules. An element $x \in M$ is uniform, if *xR* is a non-zero uniform (hence uniserial) module and for any *R*-module *M* with a unique composition se-

* Corresponding author.

E-mail addresses: f.sikander@seu.edu.sa (F. Sikander), alveera_mehdi@rediffmail.com (A. Mehdi), sabah_kaled@yahoo.com

⁽S.A.R.K. Naji). Peer review under responsibility of Egyptian Mathematical Society.



ries, d(M) denotes its composition length. For a uniform element $x \in M$, e(x) = d(xR) and $H_M(x) = \sup \{d(\frac{yR}{xR}) | y \in M, x \in yR$ and y uniform} are the exponent and height of x in M, respectively. $H_k(M)$ denotes the submodule of M generated by the elements of height at least k and $H^k(M)$ is the submodule of M generated by the elements of exponents at most k. M is h-divisible if $M = M^1 = \bigcap_{k=0}^{\infty} H_k(M)$ and it is h-reduced if it does not contain any h-divisible submodule. In other words it is free from the elements of infinite height. A QTAG-module M is said to be separable, if $M^1 = 0$. A family \mathcal{N} of submodules of M is called a nice system in M if.

- (i) $0 \in \mathcal{N};$
- (ii) If $\{N_i\}_{i\in I}$ is any subset of \mathcal{N} , then $\Sigma_I N_i \in \mathcal{N}$;
- (iii) Given any $N \in \mathcal{N}$ and any countable subset X of M, there exists $K \in \mathcal{N}$ containing $N \cup X$, such that K/N is countably generated [1].

S1110-256X(15)00022-X Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.joems.2015.01.005

A *h*-reduced *QTAG*-module *M* is called totally projective if it has a nice system. A submodule $B \subseteq M$ is a basic submodule of *M*, if *B* is *h*-pure in *M*, $B = \bigoplus B_i$, where each B_i is the direct sum of uniserial modules of length *i* and *M/B* is *h*-divisible.

For a *QTAG*-module *M*, there is a chain of submodules $M^0 \supset M^1 \supset M^2 \cdots \supset M^{\tau} = 0$, for some ordinal τ . $M^{\sigma+1} = (M^{\sigma})^1$, where M^{σ} is the σ th-*Ulm* submodule of *M*. A fully invariant submodule $L \subset M$ is a large submodule of *M*, if L + B = M for every basic submodule *B* of *M*. It was proved that several results which hold for *TAG*-modules also hold good for *QTAG*-modules [2]. Notations and terminology are followed from [3].

The Ulm-sequence of x is defined as $U(x) = (H(x), H(x_1), H(x_2), ...)$. This is analogous to the U-sequences in groups [4]. These sequences are partially ordered because $U(x) \le U(y)$ if $H(x_i) \le H(y_i)$ for every *i*. Transitive and fully transitive QTAG-modules are defined with the help of U-sequences. Ulm invariants and Ulm sequences play an important role in the study of QTAG-modules. Using these concepts transitive and fully transitive modules were defined in [5]. A QTAG-module M is fully transitive if for x, $y \in M$, $U(x) \le U(y)$, there is an endomorphism f of M such that f(x) = f(y) and it is transitive if for any two elements x, $y \in M$, with $U(x) \le U(y)$, there is an automorphism f of M such that f(x) = f(y).

2. Main results

Mehdi et al. characterized fully invariant submodules and characteristic submodules with the help of their socles and define socle-regular and strongly socle-regular *QTAG*-modules [6,7]. We start by recalling their definitions:

A *QTAG*-module *M* is said to be socle-regular (respectively strongly socle-regular) if for all fully invariant (respectively characteristic) submodules *K* of *M*, there exists an ordinal σ (depending on *K*) such that $Soc(K) = Soc(H_{\sigma}(M))$). It is self evident that strongly socle-regular *QTAG*-modules are themselves socle-regular.

Definition 2.1. A submodule N of a *QTAG*-module M is said to be projection-invariant in M if $f(N) \subseteq N$ for all idempotent endomorphisms f in End(M). Clearly, fully invariant submodules are projection-invariant, but the converse is not true in general [8].

It is easy to show that N is projection-invariant in M if and only if, $f(N) = N \cap f(M)$ for every projection $f \in End(M)$. Projection-invariant submodules satisfies the property of being distributed across the direct sum *i.e.*, if $M = P \oplus Q$ and N is projection-invariant, then $N = (P \cap N) \oplus (Q \cap N)$ [8].

Motivated by the concepts of socle-regular and strongly socle-regular *QTAG*-modules we make the following definition:

Definition 2.2. A *QTAG*-module *M* is said to be projectively socle-regular if for each projection-invariant submodule *N* of *M*, there is an ordinal σ (depending on *N*) such that $\text{Soc}(N) = \text{Soc}(H_{\sigma}(M))$.

It is obvious that projectively socle-regular *QTAG*-modules are socle-regular.

Let us recall the terminology used in [6]:

For a submodule N of M, put $\sigma = \min\{H_M(x)|x \in Soc(N)\}\)$ and denote $\sigma = \inf(Soc(N))$. Here $Soc(N) \subseteq Soc(H_{\sigma}(M))$.

Proposition 2.1. If N is a projection-invariant submodule of a QTAG-module M and $\inf(\operatorname{Soc}(N)) = k$, a positive integer, then $\operatorname{Soc}(N) = \operatorname{Soc}(H_k(M))$. Consequently, if M is separable, then M is projectively socle-regular.

Proof. Suppose that N is a projection-invariant submodule of M and $\inf(\operatorname{Soc}(N)) = k < \omega$. It remains to show that $Soc(H_k(M)) \subseteq Soc(N)$. As inf(Soc(N)) = k, there is an element $x \in \text{Soc}(N)$ such that $H_M(x) = k$ and so $d(\frac{yR}{xR}) = k$, for $y \in M$. Since every element of exponent one and finite height can be embedded in a direct summand, by [9] yR is a summand of M containing x. Therefore $M = yR \oplus M'$, for some submodule M' of M. If z is an arbitrary element of $Soc(H_k(M))/Soc(H_{k+1}(M))$, then there exists $u \in H^{k+1}(M)$ such that $d(\frac{uR}{R}) = k$ and hence $M = uR \oplus M''$. Now, d(uR) =d(yR) = k + 1, implying that $uR \cong yR$. Then we have that u =ry + m', for some $r \in R$ and $m' \in M'$. We may define $\phi : yR \oplus$ $M' \to yR \oplus M'$ by $\phi(y) = m'$, $\phi(M') = 0$. Now, ϕ is the difference of two idempotent endomorphisms of M and we define $\theta: M \to M$ by $\theta(m) = r(\psi(m)) + \phi(m)$, where ψ is the projection map given by $\psi(y) = y$, $\psi(M') = 0$. Here θ is a sum of idempotents and $\theta(y) = ry + m' = u$. Since $\theta(x) = v$ such that $d(\frac{vR}{\theta(yR)}) = k$ and vR = zR as $d(\frac{uR}{zR}) = k$ and $x \in N$, which is a projection-invariant submodule of M, we conclude that $z \in$ $\operatorname{Soc}(N)$. Hence $\operatorname{Soc}(H_k(M))/\operatorname{Soc}(H_{k+1}(M)) \subseteq \operatorname{Soc}(N)$. However, if $s \in \text{Soc}(H_{k+1}(M))$, then $z + s \in \text{Soc}(H_k(M))$ and so by the argument above, $z + s \in Soc(N)$. Thus we have that $Soc(H_k(M)) \subseteq Soc(N)$ and we are done. \Box

Corollary 2.1. If M is a QTAG-module such that $d(H_{\omega}(M)) = 1$, then M is projectively socle-regular.

Proof. Suppose N is a projection-invariant submodule of M. If $\operatorname{Soc}(N) \nsubseteq H_{\omega}(M)$, then $\inf(\operatorname{Soc}(N))$ is finite and by Proposition 2.1 above we obtain that $\operatorname{Soc}(N) = \operatorname{Soc}(H_k(M))$ for some integer k. So we may assume that $\operatorname{Soc}(N) \subseteq H_{\omega}(M)$. Since the $H_{\omega}(M)$ is a uniserial module of decomposition length 1, either $N + \operatorname{Soc}(N) = 0$ whence $\operatorname{Soc}(N) = \operatorname{Soc}(H_{\omega+1}(M))$ or $\operatorname{Soc}(N) = \operatorname{Soc}(H_{\omega}(M))$ as required. \Box

The property of a *QTAG*-module *M* being projectively socleregular is inherited by submodules of the form $H_{\sigma}(M)$.

Proposition 2.2. If M is a projectively socle-regular QTAGmodule, then so also is $H_{\sigma}(M)$, for all ordinals σ .

Proof. Let $K = H_{\sigma}(M)$ and suppose that N is a projection invariant submodule of K. Let f be an arbitrary idempotent in End(M). Then $f^* = f|_K$ is an idempotent endomorphism of K. Thus $f(N) = f^*(N) \subseteq N$, since N is projectioninvariant submodule of K. Consequently N is a projectioninvariant submodule of M and so there is an ordinal ρ such that Download English Version:

https://daneshyari.com/en/article/483488

Download Persian Version:

https://daneshyari.com/article/483488

Daneshyari.com