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Abstract By using power-mean integral inequality and Hölder’s integral inequality, this paper 
establishes some new inequalities of Simpson type for functions whose three derivatives in absolute 
value are the class of ( α, m )-geometric-arithmetically-convex functions. Finally, some applications to 
special means of positive real numbers have also been presented. 
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1. Introduction 

The classical Simpson type inequality has attracted consider- 
able attention since it is very important and remarkable in the 
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area of inequality application. Plenty of new Simpson type in- 
equalities for convex functions have been refined and extended 

by many mathematicians in a lot of references, such as [1–3] , 
and so on. In recent years, Many studies about Simpson type 
inequalities can be found by Xi and Qi [4] for logarithmically 
convex functions, by Sarikaya et al. [5] for s -convex functions, 
by Chun and Qi [6] for extended s -convex functions, by Hua 
et al. [7] for strongly s -convex functions, and by Qaisar et al. [8] 
for ( α, m )-convex functions in the published papers. 

With the development of inequality researches, the in- 
equalities for generalized convex functions have a rapid 

blossom in the field of convex analysis. For example, geometric- 
arithmetically-convex functions is one of the generalized con- 
vex functions. Very recently, Shuang et al. [9] established 
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Hermite–Hadamard type integral inequalities for s -geometric- 
arithmetically-convex functions. Hua et al. [10] also studied 

s -geometric-arithmetically-convex functions, which concerning 
about two differentiable mappings. In 2013, Park [11] and Ji 
et al. [12] used the definition of ( α, m )-geometric-arithmetically- 
convex functions to prove some new Hermite-Hadamard 

type inequalities, while Park introduced twice differentiable 
( α, m )-geometric-arithmetically convex functions. As men- 
tioned above, these papers are all involved with Hermite–
Hadamard type inequalities. However, to our knowledge, Simp- 
son type inequalities for functions whose three derivatives in 

absolute value are the class of ( α, m )-geometric-arithmetically- 
convex functions have not been reported. So we turn our atten- 
tion to this new research. 

Motivated by [11–13] , we are concerned in this pa- 
per with some new Simpson type inequalities for functions 
whose three derivatives in absolute value are the class of 
( α, m )-geometric-arithmetically-convex functions rather than 

Hermite-Hadamard type inequalities. Although the inequality 
for functions whose derivatives in absolute value are all ( α, m )- 
geometric-arithmetically-convex functions in [11,12] , a point 
that should be stressed is that this paper is associated to third 

derivatives, which has higher derivative than the previous works 
[11,12] . That is to say, this present paper continues the extension 

of previous works. 
An outline of this paper is as follows. Some preliminaries, 

including definitions and lemmas are introduced in Section 2 . 
Some new results about Simpson type inequalities for ( α, m )- 
geometric-arithmetically-convex functions are then established 

in Section 3 . Finally some applications to special means of real 
numbers are given in Section 4 . 

2. Preliminaries 

Throughout this paper, we consider a real interval I ⊆ R , and 

we denote that I 0 is the interior of I . 
The following inequality is well known in the literature as 

Simpson type inequality: 
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where the mapping f : [ a, b] → R is assumed to be four times 
continuously differentiable on the interval ( a , b ) and ‖ f (4) ‖ ∞ 

= 

sup t∈ (a,b) | f (4) (t) | < ∞ . 
Next let us recall concepts of geometric-arithmetically- 

convex and ( α, m )-geometric-arithmetically-convex functions. 

Definition 2.1 [11] . The function f : R 0 → R is said to be 
geometric-arithmetically convex or GA-convex on I , if 

f (x 

t y 1 −t ) ≤ t f (x ) + (1 − t) f (y ) (2.2) 

holds, for all x , y ∈ I and t ∈ [0, 1], where x 

t y 1 −t and t f (x ) + 

(1 − t) f (y ) are respectively called the weighted geometric mean 

of two positive numbers x and y and the weighted arithmetic 
mean of f ( x ) and f ( y ). 

Definition 2.2 [14] . The function f : [0 , b] → R and ( α, m ) ∈ 

[0, 1] 2 . If 

f (x 

t y m (1 −t) ) ≤ t α f (x ) + m (1 − t α ) f (y ) (2.3) 

for all x , y ∈ [0, b ] and t ∈ [0, 1], then f ( x ) is said to be ( α, m )- 
GA-convex function. If (2.3) is reversed, then f ( x ) is said to be 
( α, m )-GA-concave function. 

Remark 2.1. It is sure that GA-convexity means just ( α, m )-GA- 
convexity when α = 1 and m = 1. 

To establish some new Simpson type inequalities for ( α, m )- 
GA-convex functions, we need the following lemmas. 

Lemma 2.1 ([ 15 , Lemma 2.5]) . For t ∈ [0, 1], a , b > 0, we have 
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Lemma 2.2 ([ 6 , Lemma 2.1]) . Let f : I ⊆ R → R be a three 
times differentiable mapping on I 0 , and a , b ∈ I with a < b. If 
f ′ ′ ′ ∈ L [ a , b ], then the following equality holds: 
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3. Simpson type inequalities for ( α, m )-GA-convex functions 

In what follows, we are now in a position to present and prove 
some new Simpson type inequalities for functions whose three 
derivative absolute values are ( α, m )-GA-convex functions. 

Theorem 3.1. Let f : I ⊆ R 0 = [0 , ∞ ) → R be a differentiable 
on I 0 , a , b ∈ I with 0 < a < b < ∞ , f ′ ′ ′ ∈ L [ a , b ], and | f ′ ′ ′ | 

be decreasing on [ a , b ] . If | f ′ ′ ′ | 

q is (α, m ) − GA -convex on 
[ 0 , max { a 1 m , b} ] for ( α, m ) ∈ [0, 1] 2 and q ≥ 1, then the following 
inequality 
∣∣∣∣1 
6 

[
f (a ) + 4 f 

(a + b 
2 

)
+ f (b) 

]
− 1 

b − a 

∫ b 

a 
f (u ) du 

∣∣∣∣
≤ (b − a ) 3 

96 

(
1 
12 

)1 − 1 
q 
[(

K 1 | f ′′′ (b) | q + m 

( 1 
12 

− K 1 

)∣∣∣ f ′′′ 
(
a 

1 
m 
)∣∣∣q 

) 1 
q 

+ 

(
K 2 | f ′′′ (b) | q + m 

( 1 
12 

− K 2 

)∣∣∣ f ′′′ 
(
a 

1 
m 
)∣∣∣q 

) 1 
q 
]

(3.1) 

holds, where 
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Proof. Since | f ′ ′ ′ | is decreasing on [ a , b ], from Lemma 2.1, 2.2 
and using power-mean integral inequality, it follows that 
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