## Original Article

# Some Simpson type integral inequalities for functions whose third derivatives are $(\alpha, m)$ -GA-convex functions 

YuJiao Li ${ }^{\text {a }}$, TingSong Du ${ }^{\text {a,b,* }}$<br>${ }^{\text {a }}$ Department of Mathematics, Science College, China Three Gorges University, Yichang 443002, China<br>${ }^{\mathrm{b}}$ Hubei Province Key Laboratory of System Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China

Received 6 April 2015; accepted 6 May 2015
Available online 26 September 2015

## Keywords

Convex function;
( $\alpha, m$ )-GA-convex
functions;
Simpson type inequality

Abstract By using power-mean integral inequality and Hölder's integral inequality, this paper establishes some new inequalities of Simpson type for functions whose three derivatives in absolute value are the class of $(\alpha, m)$-geometric-arithmetically-convex functions. Finally, some applications to special means of positive real numbers have also been presented.

2010 MATHEMATICAL SUBJECT CLASSIFICATION: 26D15; 26A51; 26E60; 41A55
Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

## 1. Introduction

The classical Simpson type inequality has attracted considerable attention since it is very important and remarkable in the

[^0]area of inequality application. Plenty of new Simpson type inequalities for convex functions have been refined and extended by many mathematicians in a lot of references, such as [1-3], and so on. In recent years, Many studies about Simpson type inequalities can be found by Xi and Qi [4] for logarithmically convex functions, by Sarikaya et al. [5] for $s$-convex functions, by Chun and Qi [6] for extended $s$-convex functions, by Hua et al. [7] for strongly $s$-convex functions, and by Qaisar et al. [8] for $(\alpha, m)$-convex functions in the published papers.

With the development of inequality researches, the inequalities for generalized convex functions have a rapid blossom in the field of convex analysis. For example, geometric-arithmetically-convex functions is one of the generalized convex functions. Very recently, Shuang et al. [9] established

Hermite-Hadamard type integral inequalities for $s$-geometric-arithmetically-convex functions. Hua et al. [10] also studied $s$-geometric-arithmetically-convex functions, which concerning about two differentiable mappings. In 2013, Park [11] and Ji et al. [12] used the definition of $(\alpha, m)$-geometric-arithmeticallyconvex functions to prove some new Hermite-Hadamard type inequalities, while Park introduced twice differentiable $(\alpha, m)$-geometric-arithmetically convex functions. As mentioned above, these papers are all involved with HermiteHadamard type inequalities. However, to our knowledge, Simpson type inequalities for functions whose three derivatives in absolute value are the class of $(\alpha, m)$-geometric-arithmeticallyconvex functions have not been reported. So we turn our attention to this new research.

Motivated by [11-13], we are concerned in this paper with some new Simpson type inequalities for functions whose three derivatives in absolute value are the class of $(\alpha, m)$-geometric-arithmetically-convex functions rather than Hermite-Hadamard type inequalities. Although the inequality for functions whose derivatives in absolute value are all $(\alpha, m)$ -geometric-arithmetically-convex functions in [11,12], a point that should be stressed is that this paper is associated to third derivatives, which has higher derivative than the previous works [11,12]. That is to say, this present paper continues the extension of previous works.

An outline of this paper is as follows. Some preliminaries, including definitions and lemmas are introduced in Section 2. Some new results about Simpson type inequalities for $(\alpha, m)$ -geometric-arithmetically-convex functions are then established in Section 3. Finally some applications to special means of real numbers are given in Section 4.

## 2. Preliminaries

Throughout this paper, we consider a real interval $I \subseteq \mathbb{R}$, and we denote that $I^{0}$ is the interior of $I$.

The following inequality is well known in the literature as Simpson type inequality:

$$
\begin{align*}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
& \quad \leq \frac{1}{2880}\left\|f^{(4)}\right\|_{\infty}(b-a)^{4} \tag{2.1}
\end{align*}
$$

where the mapping $f:[a, b] \rightarrow \mathbb{R}$ is assumed to be four times continuously differentiable on the interval $(a, b)$ and $\left\|f^{(4)}\right\|_{\infty}=$ $\sup _{t \in(a, b)}\left|f^{(4)}(t)\right|<\infty$.

Next let us recall concepts of geometric-arithmeticallyconvex and $(\alpha, m)$-geometric-arithmetically-convex functions.
Definition 2.1 [11]. The function $f: \mathbb{R}_{0} \rightarrow \mathbb{R}$ is said to be geometric-arithmetically convex or GA-convex on $I$, if
$f\left(x^{t} y^{1-t}\right) \leq t f(x)+(1-t) f(y)$
holds, for all $x, y \in I$ and $t \in[0,1]$, where $x^{t} y^{1-t}$ and $t f(x)+$ $(1-t) f(y)$ are respectively called the weighted geometric mean of two positive numbers $x$ and $y$ and the weighted arithmetic mean of $f(x)$ and $f(y)$.
Definition 2.2 [14]. The function $f:[0, b] \rightarrow \mathbb{R}$ and $(\alpha, m) \in$ $[0,1]^{2}$. If
$f\left(x^{t} y^{m(1-t)}\right) \leq t^{\alpha} f(x)+m\left(1-t^{\alpha}\right) f(y)$
for all $x, y \in[0, b]$ and $t \in[0,1]$, then $f(x)$ is said to be $(\alpha, m)$ -GA-convex function. If (2.3) is reversed, then $f(x)$ is said to be $(\alpha, m)$-GA-concave function.

Remark 2.1. It is sure that GA-convexity means just ( $\alpha, m$ )-GAconvexity when $\alpha=1$ and $m=1$.

To establish some new Simpson type inequalities for ( $\alpha, m$ )-GA-convex functions, we need the following lemmas.
Lemma 2.1 ([15, Lemma 2.5]). For $t \in[0,1], a, b>0$, we have
$\frac{1-t}{2} a+\frac{1+t}{2} b \geq a^{\frac{1-t}{2}} b^{\frac{1+t}{2}}$.
Lemma 2.2 ([6, Lemma 2.1]). Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a three times differentiable mapping on $I^{0}$, and $a, b \in I$ with $a<b$. If $f^{\prime \prime \prime} \in L[a, b]$, then the following equality holds:

$$
\begin{align*}
& \frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(u) d u \\
& \quad=\frac{(b-a)^{3}}{96} \int_{0}^{1} t(1-t)^{2}\left[f^{\prime \prime \prime}\left(\frac{1-t}{2} a+\frac{1+t}{2} b\right)\right. \\
& \left.\quad-f^{\prime \prime \prime}\left(\frac{1+t}{2} a+\frac{1-t}{2} b\right)\right] d t . \tag{2.5}
\end{align*}
$$

## 3. Simpson type inequalities for ( $\alpha, m$ )-GA-convex functions

In what follows, we are now in a position to present and prove some new Simpson type inequalities for functions whose three derivative absolute values are $(\alpha, m)$-GA-convex functions.
Theorem 3.1. Let $f: I \subseteq \mathbb{R}_{0}=[0, \infty) \rightarrow \mathbb{R}$ be a differentiable on $I^{0}, a, b \in I$ with $0<a<b<\infty, f^{\prime \prime \prime} \in L[a, b]$, and $\left|f^{\prime \prime \prime}\right|$ be decreasing on $[a, b]$. If $\left|f^{\prime \prime \prime}\right|^{q}$ is $(\alpha, m)-G A$-convex on $\left[0, \max \left\{a^{\frac{1}{m}}, b\right\}\right]$ for $(\alpha, m) \in[0,1]^{2}$ and $q \geq 1$, then the following inequality

$$
\begin{align*}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(u) d u\right| \\
& \leq \frac{(b-a)^{3}}{96}\left(\frac{1}{12}\right)^{1-\frac{1}{q}}\left[\left(K_{1}\left|f^{\prime \prime \prime}(b)\right|^{q}+m\left(\frac{1}{12}-K_{1}\right)\left|f^{\prime \prime \prime}\left(a^{\frac{1}{m}}\right)\right|^{q}\right)^{\frac{1}{q}}\right. \\
& \left.\quad+\left(K_{2}\left|f^{\prime \prime \prime}(b)\right|^{q}+m\left(\frac{1}{12}-K_{2}\right)\left|f^{\prime \prime \prime}\left(a^{\frac{1}{m}}\right)\right|^{q}\right)^{\frac{1}{q}}\right] \tag{3.1}
\end{align*}
$$

holds, where
$K_{1}=\left(\frac{1}{2}\right)^{\alpha} \frac{(\alpha-2) 2^{\alpha+4}+\alpha^{2}+11 \alpha+34}{(\alpha+1)(\alpha+2)(\alpha+3)(\alpha+4)}$ and
$K_{2}=\left(\frac{1}{2}\right)^{\alpha} \frac{1}{(\alpha+3)(\alpha+4)}$.
Proof. Since $\left|f^{\prime \prime \prime}\right|$ is decreasing on $[a, b]$, from Lemma 2.1, 2.2 and using power-mean integral inequality, it follows that

$$
\begin{aligned}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(u) d u\right| \\
& \quad \leq \frac{(b-a)^{3}}{96} \int_{0}^{1} t(1-t)^{2}\left[\left|f^{\prime \prime \prime}\left(\frac{1-t}{2} a+\frac{1+t}{2} b\right)\right|\right.
\end{aligned}
$$

# https://daneshyari.com/en/article/483492 

Download Persian Version:

## https://daneshyari.com/article/483492

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: yujiaolictgu@163.com (Y. Li), hbycdts@163.com (T. Du).

    Peer review under responsibility of Egyptian Mathematical Society.

    | ${ }^{2}$ |  |
    | :--- | :--- |
    | ELSEVIER | Production and hosting by Elsevier |

