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Abstract We study a new model describing the transmission of influenza virus with disease re- 
sistance in human. Mathematical analysis shows that dynamics of the spread is determined by the 
basic reproduction number R 0 . If R 0 ≤ 1 , the disease free equilibrium is globally asymptotically sta- 
ble, and if R 0 > 1 , the endemic equilibrium is globally asymptotically stable under some conditions. 
The change of stability of equilibria is explained by transcritical bifurcation. Lyapunov functional 
method and geometric approach are used for proving the global stability of equilibria. A numerical 
investigation is carried out to confirm the analytical results. Some effective strategies for eliminating 
virus are suggested. 
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1. Introduction 

Influenza, also called the flu, is a disease caused by a virus that 
affects mainly the nose, throat, bronchi and, occasionally, lungs. 
The virus can spread from person to person through air by 
coughs, sneezes or from infected surfaces, and by the direct con- 
tact to infected persons. There are three types of influenza virus, 
namely, A, B, and C. Among these, influenza A viruses are more 
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severe than others for human populations. Mathematical mod- 
els have provided a useful tool to understand disease dynamics 
and give out preventive strategies [1,2] . 

In 2003, Neil and coworkers [3] constructed a mathematical 
model of influenza transmission simulating the effect of neu- 
raminidase inhibitor therapy on infection rates and transmis- 
sion of drug-resistant viral strains. They concentrate on nu- 
merical investigation without considering the stability of the 
model. Fraser et al. [4] studied the transmission model of in- 
fluenza A (H1N1) in the human population, but they did not 
include cross-species transmission. Coburn [5] presented a com- 
plex model for transmission of three species (birds, pigs and hu- 
man). In [1] , Pongsumpun considered the model for the trans- 
mission of Swine flu, a new strain of type A influenza virus, 
with different probability of the patients who have symptomatic 
and asymptomatic infections. Recently, Zhou and Guo [2] ana- 
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lyzed an influenza model with vaccination. However, many ar- 
ticles did not concern with disease resistance in human. 

The stability of epidemic models has been studied in many 
papers [6–8] . Many authors paid attention to local stability 
of equilibria. Recently, the study of epidemic models mainly 
concerns global asymptotic stability. The most successful ap- 
proaches to the problem are the direct Lyapunov method [9–
13] and the geometric method [14,15] . 

In this paper, we consider a new SEIR model depicting the 
transmission of influenza virus with disease resistance in hu- 
man. In the model, a person in exposed group or infected group 

can come back to susceptible group without treatment. This de- 
scribes realistic modeling of treatment. The model is given by a 
system of four differential equations depending on parameters. 
By using the method of next generation matrix [16] , we found 

a threshold R 0 called basic reproduction number. In general, 
when R 0 ≤ 1 , the disease dies out and when R 0 > 1 , the disease 
persists in the population. If we suppose that the endemic equi- 
librium also exists for R 0 < 1 , although it is not true, then the 
bifurcation occurring in the model can be explained as a trans- 
critical bifurcation. Several various methods are used to deter- 
mine the stability of equilibria. We concentrate our study on the 
globally stable stability of equilibria. This is obtained by Lya- 
punov functional approach and geometric approach. A numer- 
ical investigation is carried out by Mathematica software and 

AUTO software package confirming theoretical results. 
The paper is organized as follows. In the next section, we in- 

troduce the structure of the transmission model, equilibria and 

basic reproduction number. Section 3 deals with the local sta- 
bility of equilibria. In Section 4 , we prove the global stability 
of equilibria by Lyapunov functional approach and geometric 
approach. Some numerical simulations are given in Section 5 . 
Finally, Section 6 summarizes this work. 

2. The model and its basic properties 

2.1. The structure of the model 

We consider the transmission of influenza virus among the peo- 
ple. The total population, size N(t) , is divided into four distinct 
epidemiological subclasses of individuals which are suscepti- 
ble, exposed, infectious and recovered, with sizes denoted by 
S (t) , E (t) , I (t) , R (t) , respectively. In exposed group, there are 
people who have been in contact with an infected individual but 
uninfected. Besides, infectious group has people infected but be- 
come exposed without treatment. We assume that the environ- 
ment is homogeneous and natural death rates have common rate 
μ. 

The model is given by a system of ordinary differential equa- 
tions: 

d S 

dt 
= � − γ S (t) 

E (t) + I (t) 
N( t) 

+ c E ( t) + b I (t) 

+ αR (t) − μS (t) 

d E 

dt 
= γ S (t) 

E (t) + I (t) 
N( t) 

− ( c + ε + μ) E ( t) 

d I 
dt 

= ε E (t) − (β + b + μ) I (t) 

d R 

dt 
= βI (t) − (α + μ) R (t) , (1) 

Figure 1 Transfer diagram of the model (1) . 

where � is a constant recruitment of susceptible human, γ is 
the contact rate of virus transmission, c is the rate at which the 
exposed human become to be susceptible human without treat- 
ment, b is the rate at which the infectious human become to be 
the susceptible human without treatment, ε = 1 / IIP where IIP 

is the intrinsic incubation period of virus, α is the rate at which 

the recovered human become to be the susceptible human again, 
β is the rate at which the infectious human become to be the re- 
covered human, and μ is the natural death rate of the human 

population. Fig. 1 shows the transfer diagram of the model (1) . 
We assume that the total size of population N(t) is constant, 

that is N(t) = N. Then S (t) + E (t) + I (t) + R (t) = N. 
Let S(t) = 

S (t) 
N , E (t) = 

E (t) 
N , I (t) = 

I (t) 
N , R (t) = 

R (t) 
N . We ob- 

tain the reduced system 

dS 

dt 
= μ − γ S(t)(E (t) + I(t)) + cE (t) + bI (t) 

+ αR (t) − μS(t) 
dE 

dt 
= γ S(t)(E (t) + I(t)) − (c + ε + μ) E (t) 

dI 
dt 

= εE (t) − (β + b + μ) I (t) 

dR 

dt 
= βI (t) − (α + μ) R (t) , (2) 

with the condition S(t) + E (t) + I(t) + R (t) = 1 . 
It follows from the system (2) that (S + E + I + R ) ′ = 

� − μ(S + E + I + R ) = � − μ. Then lim sup t→∞ 

(S + E + 

I + R ) ≤ �

μ
. Therefore, the feasible region for system (2) is � = 

{ (S , E , I , R ) : S > 0 , E ≥ 0 , I ≥ 0 , R ≥ 0 , S + E + I + R ≤ �

μ
} . 

It is easy to verify that the region � is positively invariant 
with respect to system (2) . 

2.2. Equilibria 

To find equilibria, we set the right-hand side of the system 

(2) equals zero. Then we get two equilibria in the coordinate 
( S , E , I , R ): 

(i) Disease free equilibrium P 0 (1 , 0 , 0 , 0) . It is seen that the equi- 
librium P 0 always exists. 

(ii) Disease endemic equilibrium P 1 (S 

∗, E 

∗, I ∗, R 

∗) with positive 
components: 

S 

∗ = 

1 
R 0 

, 

E 

∗ = 

(α + μ)(β + b + μ) G 1 

G 2 
, 

I ∗ = 

ε(α + μ) G 1 

G 2 
, 
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