On the invalidity of semigroup property for the Mittag-Leffler function with two parameters

S.K. Elagan*
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Menofiya University, Shebin Elkom 32511, Egypt
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, Faculty of Science, Taif University, Taif, El-Haweiah, P.O. Box 888, 21974, Saudi Arabia

Received 9 February 2015; revised 14 April 2015; accepted 17 May 2015
Available online 15 June 2015

Keywords

Mittag-Leffler function;
Caputo fractional
derivative;
Semigroup property

Abstract It is shown that the following property
$E_{\alpha, \beta}\left(a(s+t)^{\alpha \beta}\right)=E_{\alpha, \beta}\left(a s^{\alpha \beta}\right) E_{\alpha, \beta}\left(a t^{\alpha \beta}\right), s, t \geq 0, a \in \mathbb{R}, \alpha, \beta>0$
is true only when $\alpha=\beta=1$, and $a=0, \beta=1$ or $\beta=2$. Moreover, a new equality on $E_{\alpha, \beta}\left(a t^{\alpha \beta}\right)$ is developed, whose limit state as $\alpha \uparrow 1$ and $\beta>\alpha$ is just the above property (1) and if $\beta=1$, then the result is the same as in [16]. Also, it is proved that this equality is the characteristic of the function $t^{\beta-1} E_{\alpha, \beta}\left(a t^{\alpha}\right)$. Finally, we showed that all results in [16] are special cases of our results when $\beta=1$.

Mathematics Subject Classification: 34A12
Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As a result of researchers' and scientists' increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-

[^0]Leffler functions have recently caught the interest of the scientific community. Focusing on the theory of the MittagLeffler functions, the present volume offers a self-contained, comprehensive treatment, ranging from rather elementary matters to the latest research results. In addition to the theory the authors devote some sections of the work to the applications, treating various situations and processes in viscoelasticity, physics, hydrodynamics, diffusion and wave phenomena, as well as stochastics. In particular the Mittag-Leffler functions allow us to describe phenomena in processes that progress or decay too slowly to be represented by classical functions like the exponential function and its successors. The two parameter Mittag-Leffler function is such a two-parameter function defined in the complex plane \mathbb{C} by $E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)}$, where $\alpha>0$ is the parameter and Γ the Gamma function [1].

It was originally introduced by Mittag-Leffler in 1902 [2]. Obviously, the exponential function e^{z} is a particular Mittag-Leffler function with the specified parameter $\alpha=\beta=1$, or in other words, the Mittag-Leffler function is the parameterized exponential function. In recent years the Mittag-Leffler function has caused extensive interest among scientists, engineers and applied mathematicians, due to its role played in investigations of fractional differential equations (see, for example, [3-8]). A large of its properties have been proved (see, e.g., [9-15]). In this paper we show that the following property
$E_{\alpha, \beta}\left(a(s+t)^{\alpha \beta}\right)=E_{\alpha, \beta}\left(a s^{\alpha \beta}\right) E_{\alpha, \beta}\left(a t^{\alpha \beta}\right), s, t \geq 0$,
$a \in \mathbb{R} \quad$ and $\quad \alpha, \beta>0$
is true only when $\alpha=\beta=1$, and $a=0, \beta=1$ or $\beta=2$. Moreover, a new equality on $E_{\alpha, \beta}\left(a t^{\alpha \beta}\right)$ is developed, whose limit state as $\alpha \uparrow 1$ and $\beta>\alpha$ is just the above property (1), if $\beta=1$, then the equality is the same as in [16]. Finally, it is proved that this equality is the characteristic of the function $t^{\beta-1} E_{\alpha, \beta}\left(a t^{\alpha}\right)$. To this purpose, the following properties of Mittag-Leffler function and Caputo's fractional derivative are needed:
(P1) (cf. [17, formula (2.140)]) The Laplace transform of Caputo's derivative is given by

$$
\begin{aligned}
\widehat{D_{t}^{\alpha} f(t)}(\lambda) & =\lambda^{\alpha} \hat{f}(t)-\sum_{k=0}^{n-1} \lambda^{\alpha-k-1} f^{(k)}(0), \quad \text { where } \quad n-1 \\
& <\alpha \leq n,
\end{aligned}
$$

$\widehat{D_{t}^{\alpha} f(t)}(\lambda)$ and $\lambda^{\alpha} \hat{f}(t)$ denote the laplace transform of $D_{t}^{\alpha} f(t)$ and $f(t)$, respectively.
(P2) (cf. [12, p.287]) The Laplace transform of the MittagLeffler functions can be derived from the formula

$$
\int_{0}^{\infty} e^{-\lambda t} t^{\beta-1} E_{\alpha, \beta}\left(a t^{\alpha}\right) d t=\frac{\lambda^{\alpha-\beta}}{\lambda^{\alpha}-a}, \operatorname{Re\lambda }>a^{\frac{1}{\alpha}}, a>0
$$

where $R e \lambda$ represents the real part of the complex number λ.

2. A new equality characteristic of solution function

In this section, firstly we show the following general property

$$
\begin{align*}
E_{\alpha, \beta}\left(a(s+t)^{\alpha \beta}\right) & =E_{\alpha, \beta}\left(a s^{\alpha \beta}\right) E_{\alpha, \beta}\left(a t^{\alpha \beta}\right), s, t \geq 0, a \\
& \in \mathbb{R} \quad \text { and } \quad \alpha, \beta>0 \tag{1}
\end{align*}
$$

is false, to show that, it is sufficient to provide one counterexample. By using the fact $E_{2}\left(z^{2}\right)=\left(\frac{e^{z}+e^{-z}}{2}\right)=\cosh z$, valid for all z, then elementary calculation shows that (1) doesnot hold for the choice $\alpha=2, \beta=1, a=s=t=1$ of parameters. This is because the difference of left hand side and right hand side of (1) comes out as $(\sinh 1)^{2}$. Hence (1) as a general property is false. Secondly we prove (1) is true only when $\alpha=\beta=1$, and $a=0, \beta=1$ or $\beta=2$, to do that, let
$E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)}$.
We want to find all $\alpha, \beta>0, a \in \mathbb{R}$ for which
$E_{\alpha, \beta}\left(a(s+t)^{\alpha \beta}\right)=E_{\alpha, \beta}\left(a s^{\alpha \beta}\right) E_{\alpha, \beta}\left(a t^{\alpha \beta}\right), s, t \geq 0$.

If we set $s=t=0$ we can write
$E_{\alpha, \beta}(0)=E_{\alpha, \beta}(0) E_{\alpha, \beta}(0)$.
Knowing that $E_{\alpha, \beta}(0)=\frac{1}{\Gamma(\beta)}$, yields $\Gamma(\beta)=1$ which implies $\beta=1$ or $\beta=2$. So if $a=0$ then (1) is true with $\beta=1$ or $\beta=2$ and this is the only condition, consequently we can say that for any $a \in \mathrm{R}$ and $\alpha, \beta>0$, the equality (1) may be true only when $\Gamma(\beta)=1$. Therefore, let us assume that $a \neq 0$ and $\Gamma(\beta)=1$. From (1), if we let $s=t$ then (1) becomes
$E_{\alpha, \beta}\left(a(2 s)^{\alpha \beta}\right)=E_{\alpha, \beta}\left(a s^{\alpha \beta}\right) E_{\alpha, \beta}\left(a s^{\alpha \beta}\right)=\left(E_{\alpha, \beta}\left(a s^{\alpha \beta}\right)\right)^{2}$.
Set $z=s^{\alpha \beta}$, then the above equation becomes
$E_{\alpha, \beta}\left(a z 2^{\alpha \beta}\right)=\left(E_{\alpha, \beta}(a z)\right)^{2} \quad$ for all $\quad z \geq 0$.
We differentiate (2) and set $z=0$. This gives
$\frac{a 2^{\alpha \beta}}{\Gamma(\alpha+\beta)}=\frac{2 a}{\Gamma(\beta) \Gamma(\alpha+\beta)}$.
This implies $2^{\alpha \beta}=2$. Therefore, $\alpha \beta=1$. If $\beta=1$ then $\alpha=1$ and $E_{\alpha, \beta}(z)=e^{z}$, so (1) is true. Now assume that $\beta=2$. Then $\alpha=\frac{1}{2}$. If we differentiate (2) twice with respect to z and set $z=0$ we obtain
$\frac{8 a^{2}}{\Gamma(2 \alpha+\beta)}=\frac{2 a^{2}}{\Gamma(\alpha+\beta)^{2}}+\frac{4 a^{2}}{\Gamma(\beta) \Gamma(2 \alpha+\beta)}$.
which gives (with $\beta=2$ and $\alpha=\frac{1}{2}$)
$4=\frac{32}{9 \pi}+2$,
which is not true. Therefore, (1) is true only when $\alpha=\beta=1$, and $a=0, \beta=1$ or $\beta=2$.

By definition of Caputo derivative it is clear that the Ca puto's fractional derivative operator is nonlocal in the case of non-integer order α. The memory character of Caputo's derivative operator is perhaps the cause leading to the result that $E_{\alpha, \beta}\left(a t^{\alpha \beta}\right)$, as an eigenfunction of Caputo's derivative operator does not possess semigroup property that is non-memory. This seems to tell us that any equality relationship involving $E_{\alpha, \beta}\left(a t^{\alpha \beta}\right), E_{\alpha, \beta}\left(a s^{\alpha \beta}\right)$ and $E_{\alpha, \beta}\left(a(s+t)^{\alpha \beta}\right)$ should be of memory and hence be characterized with integrals. The equality relationship stated in the following theorem which is a generalization to Theorem 1 in [16] is a result of the above idea.
Theorem 2.1. For every real a there holds that

$$
\begin{align*}
& \int_{0}^{t}(t-\tau)^{\beta-\alpha-1} f(s+\tau) d \tau=\int_{0}^{t}(s+t-\tau)^{\beta-\alpha-1} f(\tau) d \tau \\
& \quad+\frac{\alpha \Gamma(\beta-\alpha)}{\Gamma(1-\alpha)} \int_{0}^{s} \int_{0}^{t} f\left(\tau_{1}\right) f\left(\tau_{2}\right)\left(t+s-\tau_{1}-\tau_{2}\right)^{-\alpha-1} d \tau_{2} d \tau_{1} \tag{3}
\end{align*}
$$

where $t, s \geq 0$ and $f(t)=t^{\beta-1} E_{\alpha, \beta}\left(a t^{\alpha}\right)$.
Proof. Let $0<\alpha<1, \beta>1, a>0$. Define
$f(t)=t^{\beta-1} E_{\alpha, \beta}\left(a t^{\alpha}\right)=\sum_{k=0}^{\infty} \frac{a^{k} t^{k \alpha+\beta-1}}{\Gamma(k \alpha+\beta)} . \square$

https://daneshyari.com/en/article/483496

Download Persian Version:

https://daneshyari.com/article/483496

Daneshyari.com

[^0]: * Address: Department of Mathematics and Statistics, Faculty of Science, Taif University, Taif, El-Haweiah, P.O. Box 888, 21974, Saudi Arabia.
 E-mail address: sayed_khalil2000@yahoo.com
 Peer review under responsibility of Egyptian Mathematical Society.

 Production and hosting by Elsevier

