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In this work, the modified simple equation (MSE) method is applied to some class of
nonlinear PDEs, namely, a system of nonlinear PDEs, a (2 + 1)-dimensional nonlinear model gener-
ated by the Jaulent-Miodek hierarchy, and a generalized KdV equation with two power nonlineari-

As a result, exact traveling wave solutions involving parameters have been obtained for the consid-

ered nonlinear equations in a concise manner. When these parameters are chosen as special values,
the solitary wave solutions are derived. It is shown that the proposed technique provides a more pow-
erful mathematical tool for constructing exact solutions for a broad variety of nonlinear PDEs in

mathematical physics.
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1. Introduction

Recently, several methods have been used to extract exact so-
lutions of nonlinear partial differential equations (NPDEs)
such as inverse scattering method [1,2], the Darboux trans-
form [3,4], the Hirota bilinear method [5,6], the Backlund
transformation method [7-9], the Exp-function method [10-
12], the (G'/G)-expansion method [13-15], the projective Ric-
cati equation method [16], first integral method [17-20], exp
(—®(&))-expansion method [21-23], the functional variable
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method [24,25], modified simple equation method [26-33] and
others. However, up to now, a unified method that can be used
to deal with all types of nonlinear PDEs has not been found yet.
To obtain more different types of exact solution, the enhance-
ment of these methods is a challenge topic.

This paper is organized as follows: a description of the mod-
ified simple equation (MSE) method is presented first [26-33].
This is followed by an application of this method to three dis-
tinct model equations, two of them are (2 + 1)-dimensional non-
linear types, namely, a system of nonlinear PDEs and a non-
linear model generated by Jaulent-Miodek hierarchy, and the
third is the generalized KdV nonlinear model with two power
nonlinearities.

Finally, some conclusions are given.
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2. The MSE method —(@+ pn+na &) + (n+nay )" €) + fig’ (€)
+re@E)E) =0, (3)
Consider a general nonlinear PDE in the form of ) 5 B g et
(02d” — Brc” + DI(E) + 12(p7(§)) =0. )

) =0. (M

where P is a polynomial in its arguments.
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Step 1. Seek solitary wave solutions of Eq. (1) by taking

ulx,t)=U(z), z=x—ct+¢, 2)

where ¢ is an arbitrary constant, and transform (1) to a
nonlinear ordinary differential equation (ODE) as
owu,u,u",u”,...)=0. 3)

where the prime denotes the derivation with respect to
z.
Step 2. We suppose that (3) has the formal solution as

M o i
ve =Y u(Ger)- @

i=0

where «;,(i =0,1,...,M) are constants to be deter-
mined such that «y, # 0. The function W(z) is an
unknown function to be determined later such that
U'(z) # 0.

Step 3. We determine the positive integer M in (4) by balancing
the highest order derivatives and the nonlinear terms in
(3).

Step 4. We substitute (4) into (3), we calculate all the neces-

sary derivatives U, U",U", ... and then we account the
function ¥(z).
As a result of this substitution, we get a polynomial
of W7/(2)(j =0,1,...), with the derivatives of ¥(z).
Equating all the coefficients of ¥~/ (z)(j =0,1,...), to
zero yields a system of equations which can be solved to
obtain «; and W(z). Finally, substituting the values of «;
and W(z) and its derivative W'(z) into (4) leads to exact
solutions of (1).

3. Applications

Example 1. A system of nonlinear PDEs given by [34-36] is

iy + n(te, + agttyy) + Bilulu+ yiuv =0 %)

vy + (vee — Bovyy) + »a(jul) =0 (6)

where n,0,,8;,y;(i = 1,2) are real constants and n # 0,8; #
0,y1 # 0,55 # 0. The important cases of (5) and (6) are
shown in [36-38] that are the nonlinear Schrodinger equation
[36], the Davey-Stewartson (DS) equations [37], and the gener-
alized Zakharov (GZ) equations [38].

At first we are going to extract exact solutions for (5) and
(6), for this purpose, using the transformation formula

u(x,y,t) = €’ (§)v(x.p,) = L),

(M
0=px+qyt+ett=x+cy+dt+4§

where p,q.¢,¢,6p and d are real constants.
Substituting (7) into (5) and (6), we can know that d =
—2n(p + a1qc), and ¢, satisfy the equations

Integrating (9) twice with respect to & and considering the con-
stant of integration equal to zero, we find

v(xy,t) =T(¢) = —m(ﬂz@)- (10)

Substituting (10) into (8), gives
@' (&) = rp(§) — @’ (§) =0, (1
where

a = w+p2n+na1q2 B —ﬁl(azdz_ﬁ202+ 1)+}/1]/2 (12)
- n+najcc r= (n+ nayc2)(cad? — poc® + 1)

Balancing ¢” (&) with ¢3(¢) yields M = 1. Consequently, we
have the formal solution as
W’(S))
w(E) )
where Ay and A, are constants to be determined with 4, # 0.

Also the function W(&) has to be determined where W' (&) # 0.
It is easy to see that

() =A0+A1( (13)

i \11/2
') =4, (g - F)’ (14)
) \IJ/” lIJ/\II” \11/3
<p’(§):A|<\y -34s +2q,3>- (15)

Substituting (13)-(15) into (11) and equating all the coefficients
of WO w1 w=2 w3 to zero, we respectively obtain

Wl —ady— pdl =0, (16)
Ul AW A = 3424, Y =0, (17)
W2 34 W — 34,4300 =0, (18)
W3 24,07 — pAdws =0, (19)
From (16) and (19), we deduce that

Ay=0, Ay==+J/A/p, A =+/2/n (20)
From (17) and (18), we obtain

U = gy, )
where

6= (4 3450) /(Ao A ). (22)
Integrating (21), we obtain

V" = Cre ", (23)

where C| is a constant of integration.
And from (18) and (23), we obtain

U= —me it (24)
where
my = Ci/(AoA1 ). (25)

Integrating (24) with respect to &, we get
W(§) = Cr+ (mi/)e "5, (26)

where C, is the constant of integration.
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