

Original Article

The entire sequence over Musielak *p*-metric space

C. Murugesan^a, N. Subramanian^{b,*}

^a Department of Mathematics, SATHYABAMA University, Chennai 600 119, India ^b Department of Mathematics, SASTRA University, Thanjavur 613 401, India

Received 13 December 2014; accepted 11 February 2015 Available online 11 April 2015

Keywords

Analytic sequence; Double sequences; Entire sequence space; Fibonacci number; Musielak – modulus function; *p*-metric space Abstract In this paper, we introduce fibonacci numbers of $\Gamma^2(F)$ sequence space over *p*-metric spaces defined by Musielak function and examine some topological properties of the resulting these spaces.

2010 Mathematics Subject Classification: 40A05; 40C05; 40D05

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Throughout *w*, Γ and Λ denote the classes of all, entire and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces are found in Bromwich [1]. Later on it was investigated by Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir and Solankan [5], Tripathy et al. [6–18], Turkmenoglu [19], Raj [20–26] and many others.

We procure the following sets of double sequences:

Peer review under responsibility of Egyptian Mathematical Society.

 $\begin{aligned} \mathcal{M}_{u}(t) &:= \left\{ (x_{mn}) \in w^{2} : sup_{m,n \in N} | x_{mn} |^{t_{mn}} < \infty \right\}, \\ \mathcal{C}_{p}(t) &:= \left\{ (x_{mn}) \in w^{2} : p - \lim_{m,n \to \infty} | x_{mn} - |^{t_{mn}} = 1 \text{ for some } \in \mathbb{C} \right\}, \\ \mathcal{C}_{0p}(t) &:= \left\{ (x_{mn}) \in w^{2} : p - \lim_{m,n \to \infty} | x_{mn} |^{t_{mn}} = 1 \right\}, \\ \mathcal{L}_{u}(t) &:= \left\{ (x_{mn}) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} | x_{mn} |^{t_{mn}} < \infty \right\}, \\ \mathcal{C}_{bp}(t) &:= \mathcal{C}_{p}(t) \bigcap \mathcal{M}_{u}(t) \text{ and } \mathcal{C}_{0bp}(t) = \mathcal{C}_{0p}(t) \bigcap \mathcal{M}_{u}(t); \\ \text{where } t = (t_{mn}) \text{ be the sequence of strictly positive reals} \end{aligned}$

where $t = (t_{mn})$ be the sequence of strictly positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p - \lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case $t_{mn} = 1$ for all $m, n \in \mathbb{N}$; $\mathcal{M}_u(t), \mathcal{C}_p(t), \mathcal{C}_{0p}(t), \mathcal{L}_u(t), \mathcal{C}_{bp}(t)$ and $\mathcal{C}_{0bp}(t)$ reduce to the sets $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp} , respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan et al. [27,28] have proved that $\mathcal{M}_u(t)$ and $\mathcal{C}_p(t), \mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and obtained the α -, β -, γ -duals of the spaces $\mathcal{M}_u(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zeltser [29] has essentially studied both the theory of topological double sequences. Mursaleen et al. [30–35] have independently introduced the statistical convergence and Cauchy

S1110-256X(15)00021-8 Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.joems.2015.02.002

^{*} Corresponding author.

E-mail addresses: prof.murugesanc@gmail.com (C. Murugesan), nsmaths@yahoo.com (N. Subramanian).

for double sequences and established the relation between statistical convergent and strongly Cesàro summable double sequences. Altay and Başar [36] have defined the spaces $\mathcal{BS}, \mathcal{BS}(t), \mathcal{CS}_p, \mathcal{CS}_{bp}, \mathcal{CS}_r$ and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces $\mathcal{M}_u, \mathcal{M}_u(t), \mathcal{C}_p, \mathcal{C}_{bp}, \mathcal{C}_r$ and \mathcal{L}_u , respectively, and also examined some properties of those sequence spaces and determined the α -duals of the spaces $\mathcal{BS}, \mathcal{BV}, \mathcal{CS}_{bp}$ and the $\beta(\vartheta)$ -duals of the spaces \mathcal{CS}_{bp} and \mathcal{CS}_r of double series. Başar and Sever [37] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Recently Subramanian and Misra [38] have studied the space $\chi^2_M(p, q, u)$ of double sequences and proved some inclusion relations.

The class of sequences which are strongly Cesàro summable with respect to a modulus was introduced by Maddox [39] as an extension of the definition of strongly Cesàro summable sequences. Cannor [40] further extended this definition to a definition of strong A-summability with respect to a modulus where $A = (a_{n,k})$ is a nonnegative regular matrix and established some connections between strong A-summability, strong A-summability with respect to a modulus, and A-statistical convergence. In Pringsheim [41] the four dimensional matrix transformation $(Ax)_{k,\ell} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k\ell}^{nm} x_{nm}$ was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For $a, b, \ge 0$ and 0 , we have

$$(a+b)^p \le a^p + b^p.$$
 (1.1)

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m, n \in \mathbb{N})$.

A sequence $x = (x_{mn})$ is said to be double analytic if $sup_{mn}|x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double gai sequence if $|x_{mn}|^{1/m+n} \to 0$ as $m, n \to \infty$. The double gai sequences will be denoted by Γ^2 . Let $\phi = \{all finite sequences\}$.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \Im_{ij}$ for all $m, n \in \mathbb{N}$; where \Im_{ij} denotes the double sequence whose only nonzero term is a $\frac{1}{(i+j)!}$ in the $(i, j)^{th}$ place for each $i, j \in \mathbb{N}$.

An FK-space(or a metric space)X is said to have AK property if (\mathfrak{I}_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \rightarrow (x_{mn})(m, n \in \mathbb{N})$ are also continuous.

Let M and Φ be mutually complementary modulus functions. Then, we have

(i) For all $u, y \ge 0$,

 $uy \le M(u) + \Phi(y), (Young'sinequality)$

[See Kampthan et al., [42]]. (ii) For all $u \ge 0$,

$$u\eta(u) = M(u) + \Phi(\eta(u)). \tag{1.3}$$

(iii) For all
$$u \ge 0$$
, and $0 < \lambda < 1$,
 $M(\lambda u) \le \lambda M(u)$. (1.4)

Lindenstrauss and Tzafriri [43] used the idea of Orlicz function to construct Orlicz sequence space

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The space ℓ_M with the norm

$$\|x\| = \inf\left\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\},\$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p (1 \le p < \infty)$, the spaces ℓ_M coincide with the classical sequence space ℓ_p .

A sequence $f = (f_{mn})$ of modulus function is called a Musielak-modulus function. A sequence $g = (g_{mn})$ defined by

 $g_{mn}(v) = \sup\{|v|u - f_{mn}(u) : u \ge 0\}, m, n = 1, 2, \dots$

is called the complementary function of a Musielakmodulus function f. For a given Musielak modulus function f, the Musielak-modulus sequence space t_f is defined by

$$t_f = \left\{ x \in w^2 : I_f(|x_{mn}|)^{1/m+n} \to 0 asm, n \to \infty \right\},\$$

where I_f is a convex modular defined by

$$I_f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn} (|x_{mn}|)^{1/m+n}, x = (x_{mn}) \in t_f.$$

We consider t_f equipped with the Luxemburg metric

$$d(x, y) = \sup_{mn} \left\{ \inf \left\{ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn} \left(\frac{|x_{mn}|^{1/m+n}}{mn} \right) \right\} \le 1 \right\}.$$

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [44] as follows

$$Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$$

 $\infty \infty$

for $Z = c, c_0$ and ℓ_{∞} , where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$.

Here c, c_0 and ℓ_{∞} denote the classes of convergent, null and bounded scalar valued single sequences respectively. The difference sequence space bv_p of the classical space ℓ_p is introduced and studied in the case $1 \le p \le \infty$ by Başar and Altay and in the case 0 by Altay et $al. The spaces <math>c(\Delta), c_0(\Delta), \ell_{\infty}(\Delta)$ and bv_p are Banach spaces normed by

$$||x|| = |x_1| + \sup_{k \ge 1} |\Delta x_k|$$
 and $||x||_{bv_p} = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}, (1 \le p < \infty).$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z(\Delta) = \left\{ x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z \right\},\$$

(1.2)

where $Z = \Lambda^2$, χ^2 and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1}$ for all $m, n \in \mathbb{N}$. The generalized difference double no-

Download English Version:

https://daneshyari.com/en/article/483502

Download Persian Version:

https://daneshyari.com/article/483502

Daneshyari.com