

Original Article

New types of continuity and openness in fuzzifying bitopological spaces

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

Y

A.A. Allam^a, A.M. Zahran^b, A.K. Mousa^b, H.M. Binshahnah^{a,*}

^a Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt ^b Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

Received 18 December 2014; revised 13 May 2015; accepted 19 May 2015 Available online 29 June 2015

Keywords

Semiopen sets; Fuzzifying topology; Fuzzifying bitopological space **Abstract** In this paper, we introduce and study the concepts of semicontinuous mappings, α -continuous mappings, semiopen mappings and α -open mappings in fuzzifying bitopological spaces. The characterizations of these mappings along with their relationship with certain other mappings are investigated.

2010 Mathematics Subject Classification: 54A40; 54C05; 54E55

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 1965 [1], Zadeh introduced the fundamental concept of fuzzy sets. Since Chang introduced fuzzy sets theory into topology in 1968 [2], Wong, Lowen, Hutton, Pu and Liu, etc., discussed respectively various aspects of fuzzy topology [3–6].

In 1991–1993 [7–9], Ying introduced the concept of the fuzzifying topology with the sematic method of continuous valued logic. In 1994 [10], Park and Lee introduced and discussed the concepts of fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings. Also, in 1994 Kumar [11,12] studied

* Corresponding author.

E-mail address: hmbsh2006@yahoo.com (H.M. Binshahnah). Peer review under responsibility of Egyptian Mathematical Society.

the concepts of fuzzy pairwise α -continuity and pairwise precontinuity and studied the concepts of semiopen sets, semi continuity and semiopen mappings in fuzzy bitopological spaces. In 1999 Khedr et al. [13], introduced the concepts of semi-open sets and semi-continuity in fuzzifying topology.

The study of bitopological spaces was first initiated by Kelley [14] in 1963. In 2003 Zhang and Liu [15], studied the concept of fuzzy $\theta_{(i,j)}$ -closed, $\theta_{(i,j)}$ -open sets in fuzzifying bitopological spaces. Also in [16], Gowrisankar et al. studied the concepts of (i,j)-pre open sets in fuzzifying bitopological spaces.

The structure of this paper is organized as follows: In Section (3) we study fuzzy continuity, open mapping in fuzzifying bitopological spaces and we introduce some results. In Section (4) we study α -open set in fuzzifying bitopological spaces and we introduce the relationship between this set and preopen (resp. semiopen) sets. In Section (5) we define the concepts of semicontinuity, α -semicontinuity in fuzzifying bitopological spaces and study the relationship between them. In Section (6) we define the concepts of fuzzy semiopen mapping,

S1110-256X(15)00035-8 Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.joems.2015.05.005

 α -open mapping, preopen mapping in fuzzifying bitopological spaces and study the relationship between them.

2. Preliminaries

Firstly, we display the fuzzy logical and corresponding settheoretical notations used in this paper:

- (1) A formula φ is valid, we write $\models \varphi$ if and only if $[\varphi] = 1$ for every interpretation.
- (2) $[\neg \alpha] = 1 [\alpha], [\alpha \land \beta] = \min([\alpha], [\beta]), [\alpha \to \beta] = \min(1, 1 [\alpha] + [\beta]),$ $[\forall x \alpha(x)] = \inf_{x \in X} [\alpha(x)], \text{ where } X \text{ is the universe of discourse.}$
- (3) $[\alpha \lor \beta] := [\neg (\neg \alpha \land \neg \beta)]; \qquad [\alpha \leftrightarrow \beta] := [(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)]; [\exists x \alpha(x)] := [\neg (\forall x \neg \alpha(x))];$ $\widetilde{[A \subseteq B]} := [\forall x(x \in \widetilde{A} \rightarrow x \in \widetilde{B})] = \inf_{x \in X} \min(1, 1 - \widetilde{A} (x) + \widetilde{B}(x)); [A \equiv B] := [(\widetilde{A \subseteq B}) \land (\widetilde{B \subseteq A})], \qquad \text{where}$ $\widetilde{A}, \widetilde{B} \in \Im(X) \text{ and } \Im(X) \text{ is the family of all fuzzy sets in } X.$ (4) $[\alpha \land \beta] := [\neg (\alpha \rightarrow \neg \beta)] = \max(0, [\alpha] + [\beta] - 1);$ $[\alpha \lor \beta] := [\neg \alpha \rightarrow \beta] = \min(1, [\alpha] + [\beta]).$

Secondly, we give the following definitions which are used in the sequel.

Definition 2.1 [7]. Let *X* be a universe of discourse, P(X) is the family of subsets of *X* and $\tau \in \mathfrak{I}(P(X))$ satisfy the following conditions:

- (1) $\tau(X) = 1$ and $\tau(\phi) = 1$;
- (2) for any $A, B, \tau(A \cap B) \ge \tau(A) \land \tau(B)$;
- (3) for any $\{A_{\lambda} : \lambda \in \Lambda\}, \tau(\bigcup_{\lambda \in \Lambda} A_{\lambda}) \ge \bigwedge_{\lambda \in \Lambda} \tau(A_{\lambda}).$

Then τ is a fuzzifying topological space.

Definition 2.2 [7]. Let (X,τ) be a fuzzifying topological space.

- (1) The family of all fuzzifying closed sets is denoted by $F \in \mathfrak{I}(P(X))$, and defined as follows: $A \in F := X \sim A \in \tau$, where $X \sim A$ is the complement of A.
- (2) The neighborhood system of $x \in X$ is denoted by $N_x \in \mathfrak{I}(P(X))$ and defined as follows:
 - $N_x(A) = \sup_{x \in B \subseteq A} \tau(B).$
- (3) The closure $c\overline{l(A)}$ of $A \subseteq X$ is defined as follows: $c\overline{l(A)}(x) = 1 - N_x(X \sim A).$
- (4) The interior of $A \subseteq X$ is denoted by $int(A) \in \mathfrak{I}(P(X))$ and defined as follows: $int(A) = N_x(A)$.

Definition 2.3 [9]. Let (X,τ) and (Y,σ) be two fuzzifying topological spaces.

(1) A unary fuzzy predicate C ∈ ℑ(Y^X), called fuzzy continuity, is given as follows:
 f ∈ C := ∀u(u ∈ σ → f⁻¹(u) ∈ τ). i.e.,

$$C(f) = \inf_{u \in P(Y)} \min(1, 1 - \sigma(u) + \tau(f^{-1}(u))).$$

(2) A unary fuzzy predicate O ∈ ℑ(Y^X), called fuzzy openness, is given as follows:
 f ∈ O := ∀u(u ∈ τ → f(u) ∈ σ). i.e.,

$$O(f) = \inf_{u \in P(X)} \min(1, 1 - \tau(u) + \sigma(f(u))).$$

Definition 2.4 [15]. Let (X, τ_1) and (X, τ_2) be two fuzzifying topological spaces. Then a system (X, τ_1, τ_2) consisting of a universe of discourse X with two fuzzifying topologies τ_1 and τ_2 on X is called a fuzzifying bitopological space.

Definition 2.5 [17]. Let (X, τ_1, τ_2) be a fuzzifying bitopological space.

- The family of all fuzzifying (*i*, *j*)-semiopen sets, denoted by sτ_(i,j) ∈ ℑ(P(X)), is defined as follows:
 A ∈ sτ_(i,j) := ∀x(x ∈ A → x ∈ cl_j(int_i(A))), i.e., sτ_(i,j)(A) = inf_{x∈A}cl_j(int_i(A))(x).
- (2) The family of all fuzzifying (*i*, *j*)-semiclosed sets, denoted by sF_(i,j) ∈ ℑ(P(X)), is defined as follows:
 A ∈ sF_(i,j) := X ~ A ∈ sτ_(i,j).

Definition 2.6 [17]. Let (X, τ_1, τ_2) be a fuzzifying bitopological space and $x \in X$.

- (1) The (i,j)-semi neighborhood system of x is denoted by $sN_x^{(i,j)} \in \Im(P(X))$ and defined as $A \in sN_x^{(i,j)} := \exists B(B \in s\tau_{(i,j)} \land x \in B \subseteq A)$, i.e., $sN_x^{(i,j)}(A) = \sup_{x \in B \subseteq A} s\tau_{(i,j)}(B)$.
- (2) The (i,j)-semi derived set sd(i,j)(A) of A is defined as follows:
 x ∈ sd(i,j)(A) := ∀B(B ∈ sN^(i,j) → B ∩ (A ~ {x}) ≠

$$\phi$$
),
i.e., $sd_{(i,i)}(A)(x) = \inf_{B \cap (A \sim \{x\}) = \phi} (1 - sN_x^{(i,j)}(B)).$

- (3) The Fuzzifying (i,j)-semi closure of $A \subseteq X$, is denoted by $scl_{(i,j)}(A)$ and defined as follows: $x \in scl_{(i,j)}(A) := \forall B((B \supseteq A) \land (B \in sF_{(i,j)}) \rightarrow x \in B),$ i.e., $scl_{(i,j)}(A)(x) = \inf_{x \notin B \supseteq A} (1 - sF_{(i,j)}(B)).$
- (4) The (*i*, *j*)-semi interior of A ⊆ X is defined as follows: sint(*i*, *j*)(A)(x) = sN^(*i*, *j*)_x(A).
- (5) The (i, j)-semi exterior of $A \subseteq X$ is defined as follows: $x \in sext_{(i,j)}(A) := x \in sint_{(i,j)}(X \sim A)$, i.e., $sext_{(i,j)}(A)(x) = sint_{(i,j)}(X \sim A)(x)$.
- (6) The (i,j)-semi boundary of $A \subseteq X$ is defined as follows: $x \in sb_{(i,j)}(A) := (x \notin sint_{(i,j)}(A)) \land (x \notin sint_{(i,j)}(X \sim A)),$ i.e., $sb_{(i,j)}(A)(x) = \min(1 - sint_{(i,j)}(A)(x), 1 - sint_{(i,j)}(A)(x))$

Definition 2.7 [16]. Let (X, τ_1, τ_2) be a fuzzifying bitopological space. The family of fuzzifying (i, j)-preopen sets, denoted by $p\tau_{(i,j)} \in \Im(P(X))$, is defined as follows:

 $A \in p\tau_{(i,j)} := \forall x (x \in A \to x \in int_i(cl_j(A))). \text{ i.e.},$ $p\tau_{(i,j)}(A) = \inf_{x \in A} int_i(cl_j(A))(x).$

 $sint_{(i,j)}(X \sim A)(x)).$

Definition 2.8 [16] . Let (X, τ_1, τ_2) and (X, σ_1, σ_2) be two fuzzifying bitopological spaces. A unary fuzzy predicate $PC_{(i,j)} \in \mathfrak{I}(Y^X)$, called fuzzy precontinuity, is given as follows: $PC_{(i,j)}(f) := \forall v(v \in \sigma_i \to f^{-1}(v) \in p\tau_{(i,j)})$. i.e.,

$$PC_{(i,j)}(f) = \inf_{v \in P(Y)} \min(1, 1 - \sigma_i(v) + p\tau_{(i,j)}(f^{-1}(v)))$$

Download English Version:

https://daneshyari.com/en/article/483510

Download Persian Version:

https://daneshyari.com/article/483510

Daneshyari.com