

Available online at www.sciencedirect.com

Procedia Computer Science 84 (2016) 127 - 131

7th International conference on Intelligent Human Computer Interaction, IHCI 2015 cBDI-based Collaborative Control for a Robotic Wheelchair Adity Saikia^{a,*}, Md. Arif Khan^a, Sumant Pusph^a, Syed Ibtisam Tauhidi^a, Rupam

Bhattacharyya^a, Shyamanta M. Hazarika^a, John Q. Gan^b ^aBiomimetic and Cognitive Robotics Lab, Computer Science and Engineering, Tezpur University, Tezpur 784028, India

^bSchool of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom

Abstract

In this paper we present a collaborative control architecture for a robotic wheelchair with the aim of providing "assistance as required". The architecture is based on cBDI - an extension to the Belief-Desire-Intention model to support human-machine collaboration. We present results of an evaluation of the architecture in a simulated environment and conclude that collaborative control could ensure "feeling in control" even under assistance.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Organizing Committee of IHCI 2015

Keywords: Human-Agent Collaboration; Collaborative Control; BDI systems; Rehabilitation Robotics; ROS-USARSim.

1. Introduction

Intelligent Wheelchair (IW) is presented as a solution to the lack of independence suffered by mobility impaired individuals. The term *robotic wheelchair* is used synonymously with IW. Several prototypes have been developed; control algorithms proposed². However, more often than not, the user is relegated to being a *rider* rather than taking advantage of user's potential. Nevertheless, there are brain-computer-interface (BCI) driven systems taking user mental states to consideration for driving IWs². For retention of residual skills, IWs need to provide "assistance as required"². Most of the current approaches for control of IWs² ignore the basic evidence that human act independently (of the system) and are often satisfied with a good solution (which may not be optimal), a phenomenon that is called satisficing². It is important that the system should not only automatically adapt the level of assistance but also perform in a way so as that the user is unable to realize that he is getting help! Could there be a way to create cognitively capable machines that given a human team-mate affect peer-to-peer interaction and collaboration? An *agent* can serve as the basis for such machines². Within agent literature Belief-Desire-Intention (BDI) paradigm is widely used to achieve human-like intelligence. The BDI architecture needs to be extended to enable collaboration². To that end we present cBDI - an extension to the BDI model to support human-machine collaboration. The cBDI agent is the core for a collaborative control architecture supporting "assistance as required". The control architecture: a. facilitate human-centric "decision capabilities" of the machine and b. facilitate "negotiation" in control.

*Corresponding author.

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the Organizing Committee of IHCI 2015 doi:10.1016/j.procs.2016.04.076

E-mail address: smh@tezu.ernet.in

We are interested in understanding whether a collaborative control architecture could give the sense of "feeling in control"?? even under assistance. We present results of an evaluation of the architecture in ROS-USARSim. The proposed collaborative controller could ensure "feeling in control".

2. Collaborative Control Architecture

The proposed architecture is three layered (see Figure 1). User Interface facilitates communication with the human user. Superior Control Layer (SCL) built around a cBDI agent provides human-centric decision capabilities including a negotiator, making collaboration possible. Local Control Layer takes care of the low level control of the hardware.

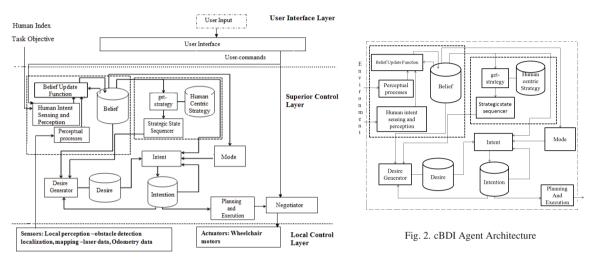


Fig. 1. Collaborative Control Architecture.

2.1. cBDI: A Collaborative BDI Agent

cBDI architecture (shown in Figure 2) retains the *Belief*, *Desire* and *Intention* modules. Additional modules include *Human Intent Sensing and Perception* (HISP) and the *Strategic Planner* (SP) together with a *mode* function. *Belief:*. Belief describes proprioception-localizing information about self; and the set of executable action of the agent. In cBDI, beliefs have been enhanced to include *human intent* and knowledge of human capacity.

Desire: Desires *D* describe the set of goal states that the agent tries to achieve. Desires are obtained through a desire generation function, on the basis of its current beliefs and current intentions.

Intention:. Intention I is the commitment of an agent to a specific action(s) in order to actively follow a desire.

Human Intent Sensing and Perception:. For collaboration the agent should be aware of the intentions, capabilities and actions of the human team-member. The HISP module is a mechanism capable of obtaining the desired information from certain stimuli provided by the environment and translated into agent's interaction beliefs.

Strategic Planner:. The SP is responsible for maintaining a human-centric strategy and facilitates derivation of a set of "adopted" goals; goals are based on agent's a priori knowledge of human-centric strategies.

Belief Revision Functions:. There are three belief update functions: a. belief revision function through perception including proprioception (*self-aware*); b. *Interaction* and c. human-intent sensing and perception (*Human-intent*).

Desire Generator Function:. Desire generator function described here is similar to the one in classical BDI agent.

Intent Function:. The *Intent* function described here is similar with the one in classical BDI agent; however, here we have added agent's behaviour state *value*. *value* reflects the agent's mode.

Mode:. Mode function generates agent behaviour state based on the human capacity.

Plan Function:. The plan function generates a ordered sequence of actions to satisfy agent's intention.

Download English Version:

https://daneshyari.com/en/article/488554

Download Persian Version:

https://daneshyari.com/article/488554

Daneshyari.com