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ARTICLE INFO ABSTRACT

This paper proposes a Bayesian statistics-based analytical solution and a Markov Chain Monte Carlo (MCMC)
method-based numerical solution to estimate the credible interval for fraction nonconforming. Both solutions
provide a more accurate, reliable, and interpretable estimation of sampling uncertainty and can be used to
improve the functionality of automated, nonconforming quality management systems. To reveal how the in-
herent mathematical mechanism functions for an analytical solution, a step-by-step proof with a calculation
example is provided. For the numerical solution, a specialized Metropolis-Hastings algorithm and an illustrative
simulation example are provided to elaborate the stochastic processes of the method. An industrial case study,
from a pipe fabrication company in Alberta, Canada, is presented to demonstrate the feasibility and applicability
of the proposed credible interval estimation methods. Results of the case study indicate that both solutions can
accurately and reliably serve the nonconforming quality inference purpose. This research can be implemented as
a decision-making tool for credible interval estimation and will provide valuable support for understanding and
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improving quality performance of automated, nonconforming quality control processes.

1. Introduction

Computer-based quality management systems, such as QUALICON
or BIM-based quality management systems, have been widely im-
plemented throughout the construction industry [2,8]. Although these
systems have facilitated the collection of vast amounts of quality
management data, conversion of this data into useable information
remains challenging for many practitioners [9]. Automated, data-
driven quality management systems, which facilitate the transforma-
tion of data into useable information, are often implemented to enhance
decision-making processes. However, for a data-driven quality man-
agement system to be successful, it must accurately estimate process
uncertainty. Integration of accurate, reliable, and straightforward ap-
proaches that measure uncertainty of inspection processes are instru-
mental to the successful implementation of automated, data-driven
quality management systems.

Sampling uncertainty must be considered during estimation of a
true population variable when data are obtained from a sample rather
than an entire population [22]. A common tool used to assess un-
certainty is interval estimations, which are applied to estimate the
margin of sampling error [7]. Of the several types of interval estima-
tions, confidence intervals, which are commonly introduced in statistics
textbooks, have been widely applied in statistical process control.
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However, several researchers have outlined the disadvantages of con-
fidence intervals and have contended that confidence intervals are not
well-suited to address the needs of scientific research [16]. Accordingly,
due to their straightforwardness [7] and reliability [10], researchers are
now advocating for the use of Bayesian credible intervals rather than
conventional confidence intervals. In contrast to confidence intervals,
an observer can combine previous knowledge with observed data to
estimate parameters of interest when using Bayesian statistics [3,10]. In
a Bayesian treatment, prior distributions of the parameters are in-
troduced and posterior distributions are computed, based on Bayes'
theorem, from observed data [4]. After obtaining posterior distribu-
tions, uncertainty can be quantified by providing certain tail quantiles
of the posterior distribution [21]. For example, a 95% credible interval
can be specified by the 0.025 and 0.975 quantiles of the posterior
distribution.

Calculation of sampling uncertainty in quality management systems
is further complicated for quality characteristics that cannot be ap-
propriately represented numerically. Often, quality characteristics are
assessed as either conforming or nonconforming to specified quality
standards. In contrast to data that is represented numerically, sampling
uncertainty must instead be assessed from the fraction nonconforming,
defined as the ratio of nonconforming items in a population to the total
items in that population [15]. To appropriately incorporate
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uncertainty, it is necessary to obtain a range of values that cover the
true population fraction nonconforming [17]. As is common for sta-
tistical processes, this range should be wider for unfamiliar items and
narrower for familiar items.

The aim of the present study is to introduce a credible interval es-
timation approach for fraction nonconforming by providing two alter-
native types of solutions, namely analytical and numerical, to more
effectively incorporate uncertainty in fraction nonconforming in-
ferences. The content of this paper is organized as follows: An overview
of the research workflow is provided in the methodology section, and
the research methodology is detailed in the following sections. First, the
statistical principles underlying fraction nonconforming for mathema-
tically modelling nonconforming quality control processes are dis-
cussed. Then, a detailed introduction to credible interval and Bayesian
inference is provided. Afterwards, a Bayesian statistics-based analytical
solution and an MCMC method-based numerical solution for de-
termining credible intervals and posterior distributions for fraction
nonconforming are introduced. To elaborate on the implementation of
the proposed solutions, an illustrative example of each solution is
provided. Finally, the feasibility, applicability, and consistency of the
two proposed solution types are demonstrated following a practical
case study of industrial pipe welding quality management. In addition
to providing insights for the improvement of uncertainty estimation in
automated data-driven quality management systems, findings of this
study will also provide valuable insights on the use of Markov Chain
Monte Carlo (MCMC) methods to determine posterior distributions for
complex variables.

2. Research methodology

The research methodology of this study is illustrated in Fig. 1. First,
the problem was abstracted into a mathematical model using a Ber-
noulli process—an established model from the area of statistical quality
control—to estimate the fraction nonconforming [15]. Second, to de-
monstrate the advantages of implementing Bayesian statistics for in-
corporating uncertainty in fraction nonconforming estimation, the
theoretical background of credible interval estimation and Bayesian
inference were thoroughly investigated. From this, it was determined
that a credible interval has a more intuitive interpretation than a classic
confidence interval when estimating the unknown fraction non-
conforming. The results also demonstrated that Bayesian statistics was
capable of recalibrating existing statistical distributions with newly
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Fig. 1. Research methodology flow chart.
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updated data. To determine a non-informative prior distribution for
fraction nonconforming estimation, selection of the prior distribution
was then investigated. Finally, a Bayesian statistics-based analytical
solution and an MCMC-based numerical solution were developed to
derive the posterior distribution of fraction nonconforming. To reveal
how the inherent mathematical mechanism functions, a step-by-step
proof with a calculation example was conducted for the analytical so-
lution; a specialized Metropolis-Hastings algorithm and an illustrative
simulation example were provided for the numerical solution. Ad-
vantages and disadvantages of each method were discussed. Then, the
feasibility and applicability of the proposed solutions were evaluated
following their application to an industrial case study. Details of the
systematic and theoretical analysis of these research steps are detailed
as follows.

3. Fraction nonconforming modelling

In the nonconforming quality inspection process, the desired out-
come is usually referred to as “success” and the alternative outcome is
often referred to as “failure.” When an item fails, it must be repaired
and inspected until it passes inspection. The inspection outcome O can
be treated as a Bernoulli random variable with probability function
[15]:

PO= {(1 o)

Variable O takes on a value of 1 with probability p and the value 0
with probability (1 —p) = q. A realization of this random variable is
called a Bernoulli trial. The sequence of Bernoulli trials is a Bernoulli
process. The number of failed inspections X has a binomial distribution
B(n,p).

In statistical quality control processes, the fraction nonconforming
of the sample is defined as the ratio of the number X of nonconforming
items in the sample to the sample size n as Eq. (2) [15].

p x
-p=q x

n (2

D is a point estimate of the true, unknown value of the binomial
variable p, which represents the fraction nonconforming of the sampled
items. The mean of p can be calculated as Eq. (3).

My =P 3

4. Credible interval and Bayesian inference

In statistics, interval estimation is generally defined as the use of
sample data to calculate an interval of possible (or probable) values of
an unknown population variable [7]. Confidence intervals and credible
intervals are the most widespread forms of interval estimations. In
general, both confidence intervals and credible intervals can be defined
for a variable X as P{l <= X < u} =100(1 — a)%. Where 1 is the lower
interval limit, u is the upper interval limit, and (1 — a) is the level of
confidence (a is the significance level). However, the interpretation for
confidence intervals and credible intervals is conceptually different.

Before introducing the concept of the credible interval, the draw-
backs of the confidence interval will be discussed. Generally, a con-
fidence interval is a range of values designed to include the true value
of the variable with a tolerance probability of 100(1 — a)%. As the
number of failed inspections has a binomial distribution, only con-
fidence intervals for binomial distributions will be discussed here. The
Wald's interval, Wilson interval, and Agresti-Coull interval are classical
methods for setting confidence intervals for binomial distributions [6].
Their analytical equations are listed in Table 1.

From the confidence interval equations listed in Table 1, it is evi-
dent that interval endpoints in these intervals depend only on collected
data (i.e., the fraction nonconforming p and the sample size n).
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