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a b s t r a c t

In this paper, composites made of periodically repeating micro structures are investigated. The study
aims at identifying the optimal spatial distribution of constituents within a composite material to obtain
the material of desired/improved functional properties. To find the relationship between micro- and
macro-structural properties of the composite material, the method of homogenization is used. The prob-
lem of finding optimal microstructures of various materials, with the aim of obtaining maximum rigidity,
i.e., maximum volume and shear modules for the base cell of a composite that contains the original instal-
lation of technological holes and/or inclusions was first investigated. For illustration and validation of the
proposed approach, numerical examples are provided.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that mechanical properties of composite mate-
rials can be improved by modifying the topology of the material
microstructure. For instance, an approach based on the structural
topology optimization can be employed to find the best space dis-
tribution of material phases constituting the composite
microstructure. The main idea of designing a microstructure of a
composite material having periodic patterns/cells is based on find-
ing optimal distribution of periodic stress-strain fields already on a
micro-scale, for a periodic elementary cell, called a base cell. A base
cell can be studied with the help of the finite element method, and
then a procedure of the topological optimization of this elemen-
tary, periodically repeated cell can be investigated instead of
studying the whole composite structure. Usually, the method of
homogenization is applied in order to average the complex micro
structural behavior of an elastic medium to determine the macro-
scopic properties of a unit cell. The theory of homogenization has
been recognized as a rigorous modeling methodology for charac-
terizing the mechanical behavior of cellular materials and compos-
ites with periodic microstructures [1–3]. However, for complex

microstructures of the elastic medium, analytical determination
of the stress/strain fields is extremely difficult. Therefore, to find
the most effective properties of the elastic medium, the homoge-
nization procedure is employed by means of numerical approaches
like the finite element method (FEM) [4,5].

The inverse problem is to design a new microstructure of the
periodic unit cell so that the resulting material has desirable phys-
ical properties. The material design concept based on topology
optimization and homogenization has been applied to design elas-
tic [6–13] and thermo elastic [14,15] composite materials. A sys-
tematic and scientific means of microstructural design is
formulated as an optimization problem for the parameters that
represent the material properties and topology of the material
microstructure.

Over the last two decades, various topology optimization algo-
rithms and interpolation schemes, e.g. solid isotropic material with
penalization (SIMP) [16–19], evolutionary structural optimization
(ESO) [20], and level set technique [21,22] have been developed.
These topology optimization techniques have been used exten-
sively to solve design problems not only for macroscopic struc-
tures, but also for microstructures of materials/composites in
recent years.

Some attempts have been also made to design new materials
with extraordinary physical properties, e.g., extreme thermal con-
ductivity [23] and maximum stiffness and thermal conductivity
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[24], designing a microstructure of functionally graded materials
having their physical properties changing along with the gradient
distribution of constituents [25].

In the above studies, the optimization was carried out for com-
posites of one or two materials for a homogeneous base cell. In this
work, maximization of static stiffness problem for a base cells com-
posite materials, i.e. having maximum bulk modulus or shear mod-
ulus, has been considered. The problem of topological optimization
for the base cell of the composite containing initially established
technological holes and/or inclusions has been first solved. Topo-
logical optimization of reinforcing inclusions, embedded in a
matrix with desired properties, is carried out only in the area of
the base cell not connected with technological restrictions.

2. Definition of the effective elastic tensors of a base cell

The following assumptions are taken while carrying out the
investigations: (i) an elastic composite is linear; (ii) the composite
is microscopically (transversely) isotropic; (iii) there is a lack of ini-
tial stresses; (iv) the inclusions are homogenous, linear elastic, iso-
tropic, and regularly packed; (v) the matrix material is
homogenous, linear and isotropic.

Composites made from linear elastic materials are governed by
linear equations of elasticity derived for a homogenized base cell.

In the elastic regime, the macroscopic behavior of a unit cell
made from an anisotropic material can be characterized by the
effective stress tensor �rij and the deformation tensor �eij of a
homogenized medium, which are coupled by the so-called effec-

tive elasticity tensor Ceff
ijkl as follows:

�rij ¼ Ceff
ijkl
�ekl; ð1Þ

where Ceff
ijkl depends on the filler volume fraction and properties of

the base cell microstructure. In what follows, a local coordinate sys-
tem ðYÞ is introduced with the use of the multiple scale method
[1,2] in order to describe rapid changes in the material microstruc-
ture properties in the global coordinate system ðXÞ. In this method,
the solution to the problem is searched in the form of a series of dif-
ferent powers of a small perturbation parameter e with coefficients
depending on variables xi (called slow or macroscopic) and yi (fast,
microscopic variables). The mentioned series is substituted into the
initial system of governing differential equations, and then the sys-
tem is split into equations standing by the same powers of e, which
yield equations regarding the function ui. Note that the function u0

and the coefficients of equations with respect to u0 are independent
of fast variables. Here, a local coordinate y can be taken as a fast
coordinate coupled with a slow coordinate x by the ratio
y ¼ x=e ðe << 1Þ: Displacement of an arbitrary point of an elastic
body can be approximated by a two-scale asymptotic expansion
[1,2] of the form:

ueðxÞ ¼ u0ðx; yÞ þ eu1ðx; yÞ þ e2u2ðx; yÞ þ ::: ð2Þ
Substitution of (2) into equilibrium equations yields the follow-

ing effective tensor of elastic properties:

Ceff
ijkl ¼

1
jYj
Z
Y

Cijkl � Cijpq
@vkl

p

@yq

 !
dy; ð3Þ

where jYj denotes the area of the base cell, vkl
p stands for Y� peri-

odic virtual displacements fields for the case of loading kl [1]. The
index p (p = 1, 2) denotes the number of the coordinate of the vir-
tual displacement (v1 and v2) while the index q (q = 1, 2) is the
number of the local coordinate, i.e. either y1 or y2.

The following integral equation regarding the base cell with
periodic boundary conditions holds:

Z
Y
Cijpq

@vkl
p

@yq

@v i

@yj
dY ¼

Z
Y
Cijkl

@v i

@yj
dY; 8v 2 Y ; ð4Þ

where v stands for the (kinematically admissible) virtual displace-
ment field.

The so far considered problem (4) is further solved for the base
cell using the FEM. The corresponding compatibility conditions are
formulated along the boundaries of different phases. In the plane
stress state, there are three independent cases of load, i.e.
kl ¼ 11; 22; 12: Eq. (3) can be recast to the following form:

Ceff
ijkl ¼

1
jY j
Z
Y

Cijkl � Cijpq
@vkl

p

@yq

 !
dY ¼ hCijkli � hrkl

ij i; ð5Þ

where hCijkli denotes the average elastic tensor depending on the
volume fraction of the used material. Its estimation is carried out
according to the classical rule of material mixing, and hrkl

ij i denotes
the average stress tensor associated with the base cell in the case of
the load kl: Naturally, hrkl

ij i plays a role of the correction term
reflecting the influence of the microstructure of the material ele-
mentary cell.

In a more understandable notation (5) may be written as
[19,26]

Ceff
ijkl ¼

1
jY j
Z
Y
Cpqrs e0ðijÞpq � e�ðijÞpq

� �
e0ðklÞrs � e�ðklÞrs

� �
dy; ð6Þ

where e�ðijÞpq ¼ 1
2

@vijp
@yq

þ @vijq
@yp

� �
and e0ðijÞpq are linearly independent unit

test strains, which are applied to the base cell to determine the

characteristic strain fields e�ðijÞpq . Three test strain fields are required
for 2D problems. In 2D the test strain fields take the form of

e0ð11Þpq ¼ ½100�, e0ð22Þpq ¼ ½010� and e0ð12Þpq ¼ ½001� [7,27]. It is noted that

due to symmetry, e0ð12Þpq ¼ e0ð21Þpq reducing the required test strains
from four to three in 2D.

Note that, for an arbitrary microstructure, although C is isotro-

pic, there is no reason for Ceff to be isotropic or orthotropic. How-
ever, many authors enforce the homogenized material to be
isotropic or orthotropic. For microstructures having square sym-

metry (Fig. 1), the homogenized elastic tensor Ceff is orthotropic.

Fig. 1. Quarter base cell: 1 – technological hole; 2 – technological inclusion; 3 –
domain of topological design.
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