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a b s t r a c t

The localization of damage in composite plates and other structures is often performed based on mode
shape curvatures. These curvatures are usually computed using finite differences. However, finite differ-
ences spread and amplify numerical and experimental errors. A technique based on the Ritz method
allows to choose an optimal spatial sampling in order to minimize this problem. In the present work
we apply this technique, along with the second and fourth order finite differences to compute the mode
shape curvatures. To evaluate the successfulness of the damage localizations a quality evaluator is pro-
posed in this paper. The need for the optimal spatial sampling is verified by analyzing two locations of
a wide range of damage severities. Damage localizations obtained with second and fourth order finite dif-
ferences were compared and it was found out that the results are better when one uses the highest order
finite difference.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Methods for the detection and localization of damage in com-
posite structures using vibration characteristics have been exten-
sively reported in the literature [1,2]. These methods are usually
based in the relationships among damage, the decrease in stiffness
and the changes in vibration behavior. Although one can detect the
presence of damage using natural frequencies, the localization of
damage is a more challenging task. Thus, it is necessary to make
use of more sensitive dynamic parameters. Due to the direct rela-
tionship of the curvature, bending moment and stiffness of beams
and plates at a local level, the second order spatial derivatives of
mode shapes can be used to localize damage. One of the most reli-
able methods, based on the differences of mode shape curvatures
of undamaged and damaged beams, was proposed by Pandey
et al. [3]. The computation of the curvatures is accomplished by
applying the second order central finite difference formula to the
measured displacements fields. Very recently, an overview and
comparison of methods based on modal curvatures have been pre-
sented [4]. The performance of the methods is verified with an
Euler–Bernoulli beam. Also recently, a review of similar techniques
and the localization of damage in Euler–Bernoulli and Timoshenko

beams was published [5]. One may also use the differences in the
rotation or slope of mode shapes to localize damage, and such a
method was proposed by Abdo and Hori [6]. Zhu et al. [7] applied
the changes in the slope of the first mode shape to detect
damage in an eight-storey numerical example and a three-storey
experimental model.

Many of the methods found in the literature can lead to incorrect
damage identifications due to the propagation of the measurement
errors, which are always present in experimental data. Being a
numerical approximation technique, the finite difference itself
also originate errors in the computation of the derivatives needed
and thus incorrect results are obtained. In order to minimize these
problems, some improvements on the methods cited above and on
similar ones, like the damage index [8] and the frequency response
functions curvature [9] methods, have been reported. For instance,
Maeck and De Roeck [10] suggested a preliminary smoothing in
order to obtain reasonable derivatives. An adaptive eigenanalysis
was proposed by Dutta and Talukdar [11] to improve the accuracy
of the modal parameter evaluation. The problem of differentiating
noisy data was minimized by dos Santos et al. [12] by applying a
differentiation/smoothing technique. If one uses the curvature
differences of the frequency response functions, the simple
summation of the information at different frequencies may mask
the true location of the damage. Thus, the sum of the maximum
occurrences in the frequency range, normalized to the number of
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total occurrences is a better indicator of damage as shown in [13].
As pointed out by Lestari et al. [14], if one uses a scanning laser
vibrometer, the resulting large number of measurement points also
increases the quality of the measured displacement mode shapes
and thus the accuracy of the mode shape curvatures. Guan and
Karbhari [15] proposed a method where the derivatives are
estimated using spline interpolation and numerical optimization.
In order to cope with uncertainty in structural damage detection,
Chandrashekhar and Ganguli [16] proposed the combination of
the mode shape curvature based method and fuzzy logic. Tomas-
zewska [17] developed a technique combining deterministic and
stochastic approaches to distinguish the false results from the true
ones, using modal curvature and structural flexibility. Another
approach to improve the damage identification is the use of signal
processing tools such as wavelets [18]. A method based on a mod-
ified Savitzky–Golay filter and cubic splines was proposed recently
by Quaranta et al. [19].

The influence of measurement and numerical errors can also be
diminished by defining and selecting an optimal spatial sampling,
as proposed by Sazonov and Klinkhachorn [20] and Moreno-García
et al. [21]. In the work of Sazonov and Klinkhachorn [20], the
optimal spatial sampling for the computation of the mode shape
curvature of isotropic beams with the second order central finite
difference formula is obtained based on the discretization of a
number of sampling intervals. This allows the estimation of the
maximum of the mode shapes fourth order derivative. In the more
recent work of Moreno-García et al. [21] the optimal spatial sam-
pling is obtained by minimization of the total error and the use
of the Ritz method to obtain higher order derivatives of the modes
shapes. Furthermore, the formulation is applied to laminated com-
posite plates. The damage studied in reference [21] is described by
a global reduction of the laminated stiffness and results with only a
value of the damage parameter are presented. With this damage
parameter one is not able to define the reduction of stiffness in a
given direction and thus may not describe correctly a actual
damage.

In the present work, the damage is defined by a stiffness
reduction in the longitudinal direction of the laminated plate,
which according to Wang et al. [22] has the most influence on the
vibration characteristics. Besides this new damage model, a com-
prehensive study of the intensity of damage is carried out. Because
the optimal spatial sampling depends on the kind of finite difference
formula used to compute mode shape curvatures, this dependency
is also studied and the errors of central finite differences of order
two and four are compared. A comparison of the quality of damage
localizations is also performed using a statistical evaluator.

2. Method

2.1. Optimal spatial sampling

The curvature of the qth mode shape of a plate rectangular in a
point with coordinates ðxj; yÞ, relative to the x direction can be
computed with a central finite difference of order m, according to
the following expression:
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where hx is the spatial sampling and Pi are known coefficients, pre-
sented in Table 1 for m ¼ 2 and m ¼ 4. Fig. 1 shows the position of
the point where the curvature is computed in relation to its
neighboring points, with a spatial sampling hx. One sees that the
computation using second (m ¼ 2) and fourth (m ¼ 4) order finite
differences involves the knowledge of the displacement in three
and five points, respectively. Eq. (1) is an extension to two dimen-

sional functions of the mathematical formulas found in [23]. A sim-
ilar expression can be written for the computation of the curvature
in the y direction.

Following the formulation presented previously in reference
[21], the mean value of the round-off error in the computation of
the mode shape curvature is given by:

EðrÞ
q ðx; yÞ ’ CðrÞ �

m!h2
x

wqðx; yÞ
�� �� ð2Þ

where the overbar denotes the mean value of the quantities and �
corresponds to the measurement accuracy.

The mean value of the intrinsic error of the finite differences is
dependent on their order, such that:
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Thus, for the central finite differences of orderm ¼ 2 andm ¼ 4,
the mean errors are, respectively:
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and
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One sees in Eqs. (2) and (3) that the mean round-off error
decreases with the spatial sampling hx, whereas the mean error
of the finite differences increases with the spatial sampling. A typ-
ical variation of the total mean error, which is the sum of the errors
discusses above, for a given measurement accuracy �, is presented
in Fig. 2. The plotted curves have left and right sides, separated by a
point with the minimum value of the total error. The left sides of
both curves are parallel and correspond to the round-off error
given by Eq. (2). The round-off error of the fourth order finite dif-
ference is higher than the round-off error of the second order finite
difference. This difference is only due to the different values of CðrÞ

and m in the definition of the round-off error according to Eq. (2).
The right side of the error curve of the fourth order finite difference
has a slope that is higher than the right side of the error curve of
the second order finite difference. This means that the error
increases more rapidly with the spatial sampling for the highest
order finite difference. The reason for this, as one sees in Eq. (5),
is that the error is a function of the sixth derivative and not the

Table 1
Coefficients Pi; CðrÞ and CðmÞ for the computation of mode shape curvatures, mean
errors, and optimal spatial sampling.

Fig. 1. Point where the curvature is computed � and its neighboring points � using
central finite differences of order m ¼ 2 and m ¼ 4 with a spatial sampling hx .
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