
Research Paper

Parallel and scalable block system generation

Michael Gardner a,⇑, John Kolb b, Nicholas Sitar a

aUniversity of California, Department of Civil and Environmental Engineering, Berkeley, CA 94720, United States
bUniversity of California, Computer Science Division, Berkeley, CA 94720, United States

a r t i c l e i n f o

Article history:
Received 27 October 2016
Received in revised form 22 March 2017
Accepted 1 May 2017

Keywords:
Block generation
Fractured rock mass
Parallel computing
Cloud Computing
Open-source software
Linear programming
Apache Spark

a b s t r a c t

Generating a realistic representation of a fractured rock mass is a first step in many different analyses.
Field observations need to be translated into a 3-D model that will serve as the input for these analyses.
The block systems can contain hundreds of thousands to millions of blocks of varying sizes and shapes;
generating these large models is very computationally expensive and requires significant computing
resources.
By taking advantage of the advances made in big data analytics and Cloud Computing, we have a devel-

oped an open-source program—SparkRocks—that generates block systems in parallel. The application
runs on Apache Spark which enables it to run locally, on a compute cluster or the Cloud. The block gen-
eration is based on a subdivision and linear programming optimization as introduced by Boon et al.
(2015). SparkRocks automatically maintains load balance among parallel processes and can be scaled
up on the Cloud without having to make any changes to the underlying implementation, enabling it to
generate real-world scale block systems containing millions of blocks in minutes.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Generating a realistic three dimensional model of a fractured
rock mass is the first step in many analyses. Discrete block based
methods such as discontinuous deformation analysis (DDA) [1]
and the distinct element method (DEM) [2] require a full geometric
description of the particles in their initial configuration as a start-
ing point for the computations. Identifying removable blocks in a
larger rock mass also requires a complete representation of the ori-
entation of the blocks and discontinuities within the rock mass—as
blocks are removed, the stability of newly exposed blocks must
also be considered. Similarly, analysis of seepage through fractured
rock relies on a complete description of the fractures and how they
are connected within the rock.

Fundamentally, this is not a new topic and many researchers
have developed algorithms to address this problem. Warburton
[3,4] presents a methodology for generating a blocky rock mass
based on sequential introduction of discontinuities and stores the
generated blocks using a three-level data structure (vertices, edges
and faces). Heliot [5] proposes a scheme for generating a blocky
rock mass that additionally deals with non-convex blocks by repre-
senting a rock block as an assemblage of convex blocks. In Heliot’s
approach, the blocks are stored using a two-level data structure

(vertices and faces). Ikegawa and Hudson [6] developed the so-
called directed body concept in which all the discontinuities are
introduced simultaneously. The blocky mass is then systematically
extracted from the vertices, edges and faces. Additionally, several
researchers [7,8] have developed algorithms based on principles
from combinational topology. These techniques are able to deal
with complex geometry, but require a significant amount of ‘‘book-
keeping” when implemented. Recently, Boon et al. [9] presented a
block cutting algorithm that is based entirely on linear program-
ming. Instead of explicitly calculating the vertices where the dis-
continuities intersect, the problem is cast as a linear
programming optimization. This makes it possible to represent
the rock blocks by a single-level data structure since only informa-
tion about the faces is needed. The simplicity and the efficiency of
the method makes it an attractive candidate for large-scale compu-
tations. The algorithm itself is entirely decoupled—once a block has
been subdivided into two new blocks, the further subdivision of
these new blocks can proceed independently. Consequently, this
algorithm is naturally parallel and multiple cuts can be made
simultaneously without the need to share information among
processes.

2. Apache Spark

The subdivision of the rock mass is an iterative process on the
same set of data, making the parallel, open-source framework

http://dx.doi.org/10.1016/j.compgeo.2017.05.001
0266-352X/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: mhgardner@berkeley.edu (M. Gardner).

Computers and Geotechnics 89 (2017) 168–178

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier .com/ locate/compgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2017.05.001&domain=pdf
http://dx.doi.org/10.1016/j.compgeo.2017.05.001
mailto:mhgardner@berkeley.edu
http://dx.doi.org/10.1016/j.compgeo.2017.05.001
http://www.sciencedirect.com/science/journal/0266352X
http://www.elsevier.com/locate/compgeo


Apache Spark [10] an ideal platform for a blocky rock mass gener-
ator using a subdivision-type approach. Spark can run on any plat-
form ranging from laptops and personal workstations with
multicore processors to Cloud based computing platforms, such
as Amazon Elastic Cloud Compute (EC2). This scalability in the
power of the computing environment without having to make
any changes to the application code allows for the analysis of
extremely large problems requiring large amounts of memory
and computing power.

The fundamental abstraction in Spark is Resilient Distributed
Datasets (RDDs) [10] that allow it to keep large data sets in mem-
ory and perform computations in a fault tolerant manner. By keep-
ing the dataset in memory, Spark is able to do iterative
transformations on the data extremely quickly since it avoids writ-
ing to disk. Fault tolerance is achieved by tracking the lineage of
RDDs—all operations applied to the RDD are represented through
a lineage graph. When a new operation is applied to the RDD, a
new link is added to the graph. Additionally, RDDs are evaluated
‘‘lazily”: only when a result is requested does Spark execute the
transformations described by the lineage graph to actually materi-
alize the current RDD. In this way, if a process unexpectedly fails
the current state can be quickly reconstructed from the lineage
contained in the graph.

For large scale problems, Spark clusters can be deployed on EC2
using Amazon’s Elastic MapReduce (EMR) framework, which auto-
matically allocates and configures a cluster of EC2 instances to exe-
cute Spark tasks submitted by the user. Amazon EC2 falls under the
greater umbrella of Cloud Computing—applications delivered as
services over the Internet and the associated software and hard-
ware that provide those services [11]. Running large scale compu-
tations on the Cloud offers users several advantages. First,
resources can be scaled on demand to meet the computing require-
ments of the problem at hand. Second, it is no longer necessary to
invest large amounts of capital in computational hardware and the
associated management and maintenance. Lastly, usage can be
scaled up or down as needed so users only pay for what they use
and only use what they need. This makes it possible for anyone
to run large scale computations since it is no longer necessary to
physically own a computer cluster. Hence, Cloud Computing essen-
tially opens the door to High Performance Computing (HPC) for
anyone willing to step through it.

2.1. SparkRocks

By taking advantage of Spark’s ability to run on any computer
system and the scalability of Cloud Computing, we developed a
parallel block cutting program, SparkRocks1, that is capable of
generating large numbers of blocks very quickly. The code is open
source and the necessary inputs to generate a fractured rock mass
are based on parameters that are obtained from field observations,
allowing users to quickly translate field measurements into a
three-dimensional model.

The program was tested on different systems—a laptop, desktop
workstation, and Amazon EC2—to illustrate its ability run on differ-
ent platforms and to verify its scalability. Results show that we can
generate approximately 8 million blocks in roughly 9 minutes.

3. Block cutting algorithm

The block cutting algorithm uses a sequential subdivision
approach based on linear programming optimization introduced
by Boon et al. [9]. Each discontinuity is introduced individually
and checked for intersection. If it intersects the block, two new

blocks are generated. The process continues sequentially until all
discontinuities have been introduced, yielding a representation of
the fractured rock mass. Many block cutting algorithms require a
significant amount of bookkeeping in terms of vertices, edges, faces
and how all of these elements are connected. From an implemen-
tation perspective, this can be extremely tedious and may not be as
robust in terms of floating point error. The linear programming
optimization approach introduced by Boon et al. greatly simplifies
how block cutting is implemented and how each block is repre-
sented in terms of data structure. We give only a brief overview
of this rock cutting algorithm since the details are presented in [9].

The orientations of joints in a fractured rock mass are described
by strike and dip, as shown in Fig. 1. The block cutting algorithm
uses the normal vector of the plane containing the joint and the
distance of that plane to some origin. The strike and dip define
the normal vector of the joint. The distance of the joint plane from
the origin is determined by projecting a vector connecting the ori-
gin to a point in the joint plane onto the normal vector. The global
+x, +y and +z axes are oriented North, West and upward.

Using only the joint normal and distance, it is possible to com-
pletely describe a polyhedral block, as shown in Fig. 2. A block
bounded by N planes is described by the following equation:

aixþ biyþ ciz 6 di; i ¼ 1; . . . ;N ð1Þ
The coefficients ðai; bi; ciÞ represent the normal vector to the ith

plane bounding the block and di is the distance of that plane from
some local origin. In vector notation this becomes:

aT
i x� di 6 0; i ¼ 1; . . . ;N ð2Þ
In order to subdivide a block, it is necessary to establish

whether the block is intersected by the discontinuity being consid-
ered. The novelty in the algorithm presented in [9] is recasting this
problem as a linear program:

minimize s

aT
i x� di 6 s; i ¼ 1; . . . ;N

aT
newx� dnew ¼ 0

ð3Þ

Here N represents the number of planes that define the block
and the discontinuity being considered is represented by the
equality. If s < 0, there is an intersection and the parent block is
split into two child blocks. The child blocks inherit all the parent
block’s planes as well as the intersecting discontinuity with oppo-
site signs for the discontinuity normal vector for each child block.

As the subdivision continues, some of the discontinuities may
become geometrically redundant. It is not necessary to remove
these redundancies after each intersection check; instead they
can be removed at a later time as discussed in Section 4.2.3. Again,
this can be done by solving a linear program:

maximize cTx

aT
i x 6 di; i ¼ 1; . . . ;N

ð4Þ

Here, c is the normal vector specific to the discontinuity being
checked for redundancy and with associated distance d. If
j cTx� d j< e the discontinuity is not redundant, where e repre-
sents a numerical tolerance close to zero.

Additionally, we take advantage of two major optimizations to
the block cutting process that are presented in [9]. The first opti-
mization draws on an idea common to contact detection in particle
methods (for example, see [12]): the complex geometry of the
polyhedral blocks is enclosed in a simpler shape, in this case a
bounding sphere. This enables a simple and fast check for intersec-
tion to determine if a more thorough but computationally expen-
sive check is necessary. The second optimization is to control the
size and aspect ratio of the blocks that are generated during the1 Available at https://github.com/cb-geo/spark-rocks.

M. Gardner et al. / Computers and Geotechnics 89 (2017) 168–178 169

http://https://github.com/cb-geo/spark-rocks


Download English Version:

https://daneshyari.com/en/article/4912489

Download Persian Version:

https://daneshyari.com/article/4912489

Daneshyari.com

https://daneshyari.com/en/article/4912489
https://daneshyari.com/article/4912489
https://daneshyari.com

