
Energy and Buildings 158 (2018) 32–36

Contents lists available at ScienceDirect

Energy and Buildings

journa l homepage: www.e lsev ier .com/ locate /enbui ld

Short communication

Appliance classification using VI trajectories and convolutional
neural networks

Leen De Baets ∗, Joeri Ruyssinck, Chris Develder, Tom Dhaene, Dirk Deschrijver
Department of Information Technology, Ghent University – imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium

a r t i c l e i n f o

Article history:
Received 10 April 2017
Received in revised form
11 September 2017
Accepted 27 September 2017
Available online 5 October 2017

Keywords:
Non-intrusive load monitoring
Appliance recognition
VI trajectory
Convolutional neural network

a b s t r a c t

Non-intrusive load monitoring methods aim to disaggregate the total power consumption of a household
into individual appliances by analysing changes in the voltage and current measured at the grid connec-
tion point of the household. The goal is to identify the active appliances, based on their unique fingerprint.
An informative characteristic to attain this goal is the voltage–current trajectory. In this paper, a weighted
pixelated image of the voltage–current trajectory is used as input data for a deep learning method: a con-
volutional neural network that will automatically extract key features for appliance classification. The
macro-average F-measure is 77.60% for the PLAID dataset and 75.46% for the WHITED dataset.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A basic but crucial step towards increased energy efficiency
and savings in residential settings, is to have an accurate view
of energy consumption. To monitor residential energy consump-
tion cost-effectively, i.e., without relying on per-device monitoring
equipment, non-intrusive load monitoring (NILM) provides an ele-
gant solution. It identifies the per-appliance energy consumption
by first measuring the aggregated energy trace at a single, cen-
tralized point in the home and then disaggregating this power
consumption for individual devices using machine learning tech-
niques.

Classifying active appliances is mostly done by extracting fea-
tures from the monitored data and training a machine learning
classifier. These features are often extracted once it is detected that
a device is switched on/off [1]. The type of features depends strongly
on the sampling rate of the measurements. When using low fre-
quency data (�1 Hz), the most common features are the power
levels and the on/off durations [2]. A drawback of this approach
is that only energy-intensive appliances can be detected. This can
be alleviated by performing fine-grained measurements at the cost
of an increased data storage rate and more complex data analytics.
It is then possible to calculate features like the harmonics [3] and
the frequency components [4] from the steady-state and transient
behavior of the current and voltage signal. More recently, the pos-

∗ Corresponding author.
E-mail address: leen.debaets@ugent.be (L. De Baets).

sibility to consider voltage–current (VI) trajectories has also been
considered [5–7]. Once the features are extracted, they can be fed
into different classification methods, like support vector machines
(SVM) [13], decision trees [14], or nearest neighbors [15]. Some
methods use the complete aggregated power signal as feature. In
[16], this is used as input for different convolutional neural net-
works (one per appliance) that each determine the total power
consumption of the corresponding appliance. The total power con-
sumption can also be disaggregated in power traces per appliance.
This could be done with the discriminative sparse coding [17], deep
neural networks like long short-term memory networks (LSTM),
and denoising autoencoders [18,20], or recurrent LSTMs [19,20].

In order to distinguish appliances based on their VI trajectories,
powerful measuring devices must be used that are able to sample
high frequency data.

In this letter, it is proposed to interpret the VI trajectories as
weighted pixelated VI images that can be used as inputs for a
CNN. Such networks are often used for classification tasks in com-
puter vision, due to their excellent discriminative power to classify
images [8]. In this paper, it is shown that a CNN approach can also
be valuable in a NILM context to discriminate active appliances
based on the weighted pixelated VI image. The results of this novel
approach are benchmarked on the PLAID [10] and WHITED [11]
datasets.

2. Weighted pixelated VI image

The VI trajectory of an appliance is obtained by plotting the
voltage against the current for a defined time period when the

https://doi.org/10.1016/j.enbuild.2017.09.087
0378-7788/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.enbuild.2017.09.087
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2017.09.087&domain=pdf
mailto:leen.debaets@ugent.be
https://doi.org/10.1016/j.enbuild.2017.09.087

L. De Baets et al. / Energy and Buildings 158 (2018) 32–36 33

Fig. 1. Transformation from a continuous VI trajectory of a compact fluorescent lamp (left) into the weighted pixelated VI image (right) for n = 50.

appliance is turned on. It is shown in [5] that manually extracted
features from the VI-trajectory like the enclosed area, slope of the
middle segment, etc. can be used to classify the appliances.

Nevertheless, extracting features from the VI trajectory is not
straightforward. As an alternative, the VI trajectory can be con-
verted into a pixelated VI image (n × n matrix) by meshing the VI
trajectory. In [6,7], each cell of the mesh is assigned a binary value
that denotes whether or not it is traversed by the trajectory. Based
on this pixelated VI image, several features can be extracted to clas-
sify different power loads [6]. Examples of features are the number
of continuums of occupied cells, the binary value of the left horizon-
tal cell and central cell. In [7], the pixelated VI image is re-arranged
into an input vector that can be fed directly into a classifier, like
random forests, to classify different appliances.

Previous approaches compress the information contained in the
VI-trajectory into a limited amount of correlated summary statis-
tics. To take full advantage of the information contained in the VI
trajectory, this letter proposes to represent the VI trajectory as a
weighted pixelated image. In contrast to [6,7] where the image has
continuous values instead of binary values. The necessary process-
ing steps are:

1 Taking the voltage V and the current I when the appliance is active
over a certain amount of time (the steady-state behaviour),

2 Normalizing such that [V, I] ∈ [−1, 1]2,
3 Creating the continuous VI trajectory,
4 Overlaying it with a n × n mesh,
5 Counting for each cell in the mesh the amount of trajectory points

it contains,
6 Normalizing the values of the cells such that the maximum value

of the cells is one.

Fig. 1 illustrates the transformation from the continuous VI tra-
jectory to the weighted pixelated VI image.

3. Convolutional neural networks

Once the VI trajectory is transformed into the weighted pixe-
lated image, a CNN is applied for the classification task. CNNs are
a type of neural networks (NNs) that are often used in computer
vision because they are highly suitable to classify images [8]. The
(C)NN takes training samples as input and classifies them by auto-
matically extracting informative features from the data. To this end,
an architecture and training procedure is needed.

The architecture of a NN consists of different layers, see Fig. 2.
The first layer is always the input layer containing as many nodes as
the dimension of a sample (here, n × n). This is followed by one (or
more) fully connected layers which are hidden. Each of these layers
contains a certain number of nodes that have learnable weights and
biases and each of the nodes receives some inputs, performs a dot

product and optionally applies a non-linearity. This non-linearity is
often obtained by using a rectified linear unit that replaces all nega-
tive values by zero. At the end, the output of the last fully connected
layer is fed into the output layer. Since the NN is used for classifi-
cation, the output layer has K nodes with K equal to the number of
classes. The values of the output nodes are chosen to lie between
0 and 1 and sum to 1, which is achieved by applying the softmax
function. In other words, each node represents the probability that
a VI image corresponds to certain class. The output node with the
maximal value represents the predicted class.

To create a CNN from a NN, convolutional layers are added. These
are placed between the input and output layers as desired and are
consequently also hidden. The main difference between a convolu-
tional and fully connected layer is that each node in a convolutional
layer is connected to a small region of the input matrix exploiting
local correlation, see Fig. 2. In each node, a convolution is performed
by adding each element of the input image to its local neighbours,
weighted by a matrix called a filter. After the convolutional layer, it
is common to implement a pooling layer to downsample the con-
volved matrix. This reduces the spatial size of the representation,
and the amount of parameters, and hence also manages overfit-
ting. This downsampling is achieved by sliding a d × d window over
the input (here, with d = 2) and each time outputting the largest
element of the window.

The implemented CNN in this letter has the following structure:
it takes as input the weighted pixelated VI image (a n × n matrix,
with n = 50), and has the following hidden layers: a convolutional
layer with f filters of size 5, a pooling layer, another convolutional
layer with f filters of size 5, another pooling layer, a fully connected
layer with n2 nodes and an output layer with K nodes. The number
of filters f is set to 50. The number of output nodes K is determined
by the number of different appliances present in the dataset (i.e., the
number of classes). An analysis of alternative parameter settings for
n and f proved no significant changes in the results.

4. Model training

Once the architecture is specified, a training procedure is ini-
tiated so that the CNN learns to classify the different classes. To
this end, multiple training examples are needed. These are images
X = (X1, X2, . . ., XN) labelled with their corresponding class t = (t1,
t2, . . ., tN) where ti is a 1-of-K coding of the classes. The aim of the
training is to find weights and biases such that a cost function is
minimized. Since the class labels are categorical, the cost function
is defined as the cross-entropy function [9]:

L = −
N∑

i=1

K∑

k=1

ti,k log(yi,k) (1)

Download English Version:

https://daneshyari.com/en/article/4914084

Download Persian Version:

https://daneshyari.com/article/4914084

Daneshyari.com

https://daneshyari.com/en/article/4914084
https://daneshyari.com/article/4914084
https://daneshyari.com

