

Contents lists available at ScienceDirect

### The Journal of Supercritical Fluids

journal homepage: www.elsevier.com/locate/supflu

# Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds




Lourdes Valadez-Carmona<sup>a</sup>, Alicia Ortiz-Moreno<sup>a</sup>, Guillermo Ceballos-Reyes<sup>b</sup>, Jose A. Mendiola<sup>c</sup>,\*, Elena Ibáñez<sup>c</sup>

<sup>a</sup> Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Ingeniería Bioquímica, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu esq. Cda. Miguel Stampa s/n, C.P. 07738, Gustavo A. Madero, Ciudad de México, Mexico

<sup>b</sup> Instituto Politécnico Nacional, Escuela Superior de Medicina, Laboratorio de Investigación Cardiometabólica integral, Plan de San Luis esq. Av. Salvador Díaz Mirón s/n, Casco de Santo Tomas, C.P. 11340, Miguel Hidalgo, Ciudad de México, Mexico

<sup>c</sup> Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC + UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049, Madrid, Spain

#### GRAPHICAL ABSTRACT



#### ARTICLE INFO

Keywords: Supercritical fluid extraction Phenolic compounds Antioxidant activity Cacao pod husk

#### ABSTRACT

Cacao pod husk (CPH) is the main co-product of the chocolate industry. In the present work; a Box-Behnken design was employed to optimize the SC-CO<sub>2</sub> for the development of suitable and green process focused on obtaining an extract enriched in phenolic compounds from this by-product, considering temperature, pressure and co-solvent (ethanol) as factors. The response variables selected were yield, total phenolics and total anti-oxidant capacity (ABTS assay). Extraction pressure and ethanol percentage were the main factors influencing the yield of the target compounds. The extract obtained at the optimum conditions (60  $^{\circ}$ C, 299 bar and 13.7% of ethanol) presented 0.52% of yield, 12.97 mg GAE/g extract and, 0.213 mmol TE/g extract which were well adjusted to the ones predicted. The findings of this study showed that supercritical fluid extraction could be used as a technique to obtain an extract enriched in phenolic compounds from CPH.

#### 1. Introduction

*Theobroma cacao* belonging to *Sterculiaceae* family; is one of the most important tropical crops worldwide. During chocolate manufacture it is necessary removing the beans from the pods generating huge quantities of by-products [1,2]. The pod husk is the major of these

by-products accounting for, about 75% the weight of the whole fruit [3,4]. Unfortunately these by-products are discarded, unexploited and left on the cocoa plantation propagating diseases such as black pod rot and producing foul odors [5,6]. Nonetheless, cacao by-products can be employed as an alternative human/animal feeds or industrial applications. CPH has been used as a source of potash for soap manufacture, as

\* Corresponding author.

E-mail address: j.mendiola@csic.es (J.A. Mendiola).

http://dx.doi.org/10.1016/j.supflu.2017.09.011

Received 27 June 2017; Received in revised form 7 September 2017; Accepted 8 September 2017 Available online 09 September 2017 0896-8446/ © 2017 Elsevier B.V. All rights reserved.

green solid base catalysts for trans-esterification of oils, as a protein source and because of its high content of fibrous material as a pectin source, a dietary supplement for fish and pigs [1,4-7]. Due to the presence of phenolic compounds, CPH displays antioxidant properties.

Epidemiological studies indicate that phenolic compounds have the potential effect to prevent chronic diseases and also have anti-carcinogenic, anti-inflammatory, anti-microbial, vasodilator and analgesic activities [8-10]. Soxhlet, reflux, cold pressing, or maceration by organic solvents has been conducted as extraction processes to obtain phenolic compounds from different sources [11]. Though, these conventional methods have limitations concerning the long extraction times, low yield and low quality of the extracts, losses of volatile compounds, degradation of the bio-compounds due to the heat and, high solvent consumption [11,12]. Therefore, it is necessary the use of an extraction technique able to overcome the mentioned limitations. Supercritical fluid extraction (SFE) is a suitable technique with several advantages such as selectivity, low organic solvent consumption, higher speed, better reproducibility and environmental safety, compared to conventional extraction techniques [12,13] and also it has found applications recovering labile or easily oxidizable bioactive compounds [14].

Response surface methodology (RSM) is a statistical tool that can be used to define the effect between responses and independent variables as well as its interactions that allow finding the levels of input variables that optimize a particular response of a process [15,16]. Few studies have been conducted on the application of supercritical extraction using CO<sub>2</sub> as solvent not only for the extraction of xanthines (caffeine and theobromine), aromatic compounds and cocoa butter from cacao nibs [17-19], but also for the extraction of xanthines and some lipids from cacao hulls [20]. Besides, to our knowledge there is not a single application of SFE for the valorization of CPH. Thus, the objective of this study was to develop and optimize a SFE process to obtain a "green" phenolic extract and to evaluate the total antioxidant capacity of CPH extracts. A Box Behnken design was used to study and analyze the effects of three independent variables (pressure, temperature and

co-solvent flow rate) on the extraction yield of total phenolic and antioxidant activity of CPH.

#### 2 Materials and methods

#### 2.1. Chemicals

Carbon dioxide (99% purity), purchased from Carburos Metálicos (Barcelona, Spain), and ethanol (99.5%), provided by VWR Chemicals (Fontenay-sous-Bois, France), were used for supercritical fluid extraction (SFE). Ultrapure water was obtained from a Millipore system (Billerica, MA, USA), Gallic acid, 6- hvdroxy-2.5.7.8-tetramethylchroman-2-carboxylic acid (Trolox,  $\geq$  97%) and 2.2-azino-bis(3ethylbenzothiazoline-6-sulfonic acid (ABTS, ≥99%) were purchased from Sigma-Aldrich (Madrid, Spain). Folin- Ciocalteu phenol reagent was provided by Merck (Darmstadt, Germany).

#### 2.2. Raw material

Cacao (Theobroma cacao L.) pods were harvested from Tapachula (14°54′00″N92°16′00″O) in Chiapas, Mexico. Whole cacao pods were rinsed with water, the cacao seeds were manually removed from the pods, and the husk was triturated into a paste using a semi-industrial blender (Crypto Peerless K55, Birmingham, England). Then, CPH paste was dried in a drying chamber at 60 °C until a dry matter having a water content of < 8% was obtained. The dried CPH was milled using a laboratory mill with grinding tank and sieved to have a particle si $ze \leq 0.5$  mm.

#### 2.3. Extraction process

#### 2.3.1. Conventional extraction

The CPH powder was extracted with ethanol (1:30) and continuously stirrer at 400 rpm for 2.5 h at room temperature. The experiments were performed in triplicate. After extraction was completed,

Table 1

Experimental design matrix including coded and uncoded extraction conditions and results for each response variables for the Box-Behnken design at 150 min of extraction.

| Variation<br>levels |      | Variables                   |                           |              |  |
|---------------------|------|-----------------------------|---------------------------|--------------|--|
| levels              |      | Extraction Temperature (°C) | Extraction Pressure (bar) | % Co-solvent |  |
| Low level           | (-1) | 40                          | 100                       | 5            |  |
| High level          | (1)  | 60                          | 300                       | 15           |  |
| Medium<br>level     | (0)  | 50                          | 200                       | 10           |  |

| Run | Operation variables |          |                |          |                |          | Responses                     |                                |           |                  |
|-----|---------------------|----------|----------------|----------|----------------|----------|-------------------------------|--------------------------------|-----------|------------------|
|     | Temperature (°C)    |          | Pressure (bar) |          | Co-solvent (%) |          |                               |                                |           |                  |
|     | Coded               | Un coded | Coded          | Un coded | Coded          | Un coded | TPC (mg GAE $g^{-1}$ extract) | TAA (mmol TE $g^{-1}$ extract) | Yield (%) | PR (mg/100 g RM) |
| 1   | (-1)                | 40       | (-1)           | 100      | (0)            | 10       | 4.12                          | 0.12                           | 0.36      | 1.48             |
| 2   | (1)                 | 60       | (-1)           | 100      | (0)            | 10       | 5.19                          | 0.16                           | 0.35      | 1.8              |
| 3   | (-1)                | 40       | (1)            | 300      | (0)            | 10       | 9.94                          | 0.18                           | 0.44      | 4.3              |
| 4   | (1)                 | 60       | (1)            | 300      | (0)            | 10       | 12.42                         | 0.24                           | 0.47      | 5.8              |
| 5   | (-1)                | 40       | (0)            | 200      | (-1)           | 5        | 6.83                          | 0.21                           | 0.15      | 1.0              |
| 6   | (1)                 | 60       | (0)            | 200      | (-1)           | 5        | 3.97                          | 0.17                           | 0.15      | 0.6              |
| 7   | (-1)                | 40       | (0)            | 200      | (1)            | 15       | 5.52                          | 0.13                           | 0.33      | 1.8              |
| 8   | (1)                 | 60       | (0)            | 200      | (1)            | 15       | 5.59                          | 0.14                           | 0.29      | 1.6              |
| 9   | (0)                 | 50       | (-1)           | 100      | (-1)           | 5        | 8.68                          | 0.18                           | 0.20      | 1.7              |
| 10  | (0)                 | 50       | (1)            | 300      | (-1)           | 5        | 3.03                          | 0.17                           | 0.15      | 0.4              |
| 11  | (0)                 | 50       | (-1)           | 100      | (1)            | 15       | 7.74                          | 0.14                           | 0.30      | 2.3              |
| 12  | (0)                 | 50       | (1)            | 300      | (1)            | 15       | 13.63                         | 0.18                           | 0.37      | 5.0              |
| 13  | (0)                 | 50       | (0)            | 200      | (0)            | 10       | 6.94                          | 0.20                           | 0.34      | 2.3              |
| 14  | (0)                 | 50       | (0)            | 200      | (0)            | 10       | 8.23                          | 0.21                           | 0.27      | 2.2              |
| 15  | (0)                 | 50       | (0)            | 200      | (0)            | 10       | 10.58                         | 0.15                           | 0.26      | 2.7              |

TPC: Total phenolic content, GAE: Gallic acid equivalent, TAA: Total antioxidant activity, TE: Trolox equivalent, PR: Phenolic recovery, RM: Raw material.

Download English Version:

## https://daneshyari.com/en/article/4914587

Download Persian Version:

https://daneshyari.com/article/4914587

Daneshyari.com