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A B S T R A C T

Rayleigh-Bénard convection in normal fluids shows interesting variation when a boundary is temperature
modulated. As granular fluids show quite good resemblance to normal fluids, it is expected that they exhibit
similar variation in convective dynamics under such a condition. A study of convection in granular fluids by
injecting spatially non-uniform energy through a boundary is done in this paper. Emphasis is made on the
dependence of onset and strength of granular convection on the relevant dimensionless parameters charac-
terizing the convective state. The non-uniform energy injection is modelled by spatially periodic modulation
of the lower boundary. It is seen that the amplitude and the wavelength of the periodic modulation are two
new important parameters characterizing the dynamics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Buoyancy driven convection in normal classical fluids is an old
and well studied problem [1,2]. It is known that granular fluids can
exhibit convective instability under certain excited states [3–11]. In
the former case the negative thermal gradient necessary for con-
vection is externally imposed [2], whereas in the latter case it is
spontaneously developed due to a combined effect of dissipation due
inelastic collisions and gravity [7].

Convection in granular fluids can be categorized into two types,
namely, boundary driven and buoyancy driven convection. In past
relatively more attention was given to the former one and several
numerical and experimental studies were done to understand var-
ious aspects of it [8,9,12,14-18], whereas the latter one received
attention in the beginning of this century after Ramírez et al. [7]
observed it, for the first time, in numerical simulations. Later, hydro-
dynamic formulation of thermal convection was given for some
simplified granular fluid models [5,13,19]. Experimentally, it was
first seen by Parker et al. [11] and, thereafter, some studies [4-6,20]
were done to understand the phenomenon.

Convection of normal fluids over patterned surfaces is of
immense practical importance [21–24]. A surface is called a pat-
terned one if, for instance, local geometry, material property, and/or
temperature varies with position. In this paper the problem of con-
vective dynamics of a granular fluid in the presence of a surface
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patterned by means of temperature modulation using an event
driven molecular dynamics (EDMD) simulation [25] is addressed. A
monodisperse granular matter is filled in a wide container which
has spatially periodic modulated bottom surface. A simple model is
chosen in order to facilitate futuristic theoretical advancement of
the convective dynamics of granular fluids under such a condition
using a hydrodynamic theory. The convective state in a monodis-
perse dilute granular fluid is known to be determined by a set of
four dimensionless control parameters [13,19]. It is seen in this paper
that the nature of spatially periodic modulation of boundary adds
two more to their list. All of them are discussed in Section 2. My
aim is to numerically find the dependence of the control parame-
ters, determining the convective dynamics of the system driven in a
temperature modulated container, on the strength of convection.

The paper is organized as follows. In Section 2 model and sim-
ulation, description of the model, the simulation technique, the
boundary conditions, the parameters, and the quantities used in this
study are defined. In Section 3 the effect of the relevant parameters
on the onset of convection is discussed. In Section 4 the findings are
summarized and conclusions are presented.

2. Model and simulation

A 2d system of N monodisperse hard disks confined in a wide
rectangular container is studied using EDMD simulation method. The
system is driven by a succession of thermal baths along the length of
the container, normal to the gravity, at the bottom. The bottom of the
container acts as a spatially periodic modulated thermal boundary
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as shown in Fig. 1. The periodicity of temperature modulation is
achieved by a square wave temperature profile H(x) which is hori-
zontally symmetric about the centre of the container such that the
mean temperature of the bottom wall Tb, spatially averaged over
length Lx, remains unchanged. Note that the modulated temperature
profile does not change over time, therefore, steady state proper-
ties of the system can be found. Each thermal bath is modelled by a
probability velocity distribution [26,27]. Its general form is given as
follows:

P (vn) =
vn

H(x)
exp

[
−(vn)2

2H(x)

]
, (1)

where vn is the normal component of the velocity of a disk just after
colliding with the bottom at position x where a thermal bath has the
temperature H(x), which determines the width of the distribution.
Thus, whenever a particle collides with the base it is reinjected with
the normal component of velocity chosen from P(vn), while the tan-
gential component of the velocity is kept unchanged so that there is
no shear effect due to walls. The side and top walls are rigid, smooth,
and elastic which play no role in triggering convection. Particle-
particle collisions are governed by a constant restitution coefficient
e. The collisions conserve momentum, but dissipate kinetic energy
such that,

(
un

ij

)′
= −eun

ij, (2)

where un
ij and

(
un

ij

)′
denote the normal components of the relative

velocities of a pair of particles before and after collision, respectively.
Length, mass, and time are measured in units of grain radius r, grain
mass m, and

√
r/g, respectively. The simulation parameters, namely,

m, r, tangential restitution coefficient et, restitution coefficient of the
side and top walls ew, and acceleration due to gravity g are all set to
unity and kept unchanged. The other simulation parameters, namely,
system size N = 20, 700, length Lx = 900, and height Lz = 300 are
kept unchanged.

2.1. Hydrodynamic fields and control parameters

To study the relevant hydrodynamic fields such as velocity,
density, and temperature the area of the system is coarse-grained
by dividing it into identical square cells of sufficiently large size. The
field variables are defined for simulation as given in Ref. [9], but

Fig. 1. Schematic diagram showing thermally excited monodisperse system with
elastic top and lateral walls. A sample temperature modulation is also shown.

with mass fraction replaced by particle mass, which is one, as the
coarse-graining cells are much larger than the grain size. Let n(x, z, t)
denotes the number of particles in the cell at (x, z) at time t. Then, the
instantaneous local velocity in the cell at (x, z) is given as,

u(x, z, t) =

∑
k∈(x,z)vk(t)

n(x, z, t)
, (3)

where vk(t) denotes instantaneous velocity of the kth particle.
Now, the time averaged local hydrodynamic velocity field is given

as,

u(x, z) =
〈
u(x, z, t)

〉
t (4)

=
1
tss

∑
t

u(x, z, t), (5)

where tss gives the time interval over which the steady state average
is obtained.

The magnitude of the instantaneous fluctuating velocity at (x, z) is
given by,

|C(x, z, t)| =

(∑
k∈(x,z)(vk(t) − u(x, z, t))2

n(x, z, t)

)1/2

, (6)

then, the local temperature field is given by,

T(x, z) =
1
2

〈
|C(x, z, t)|2

〉
t

(7)

=
1
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∑
t

|C(x, z, t)|2 (8)

The mass density of particles at the location (x, z) is calculated
from

q(x, z) =
1
dA

〈
n(x, z, t)

〉
t (9)

=
1

tssdA

∑
t

n(x, z, t), (10)

where dA is the area of a coarse-graining cell.
Similarly, it is straightforward to define the field variables asso-

ciated with horizontal rectangular stripes. They take the following
forms. The time averaged local hydrodynamic velocity field at z is
given as,

u(z) =
〈
u(z, t)

〉
t (11)

=
1
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The local temperature field at z becomes,

T(z) =
1
2
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〉
t
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