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H I G H L I G H T S

• Machine learning is used for pre-processing, fine-tuning and post-processing data.

• A new indicator is introduced to support building energy retrofit policies.

• The presented indicator is evaluated by a case study of 4767 buildings.

• Current energy indicators can misrepresent the building energy retrofit potential.
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A B S T R A C T

The vast data collected since the enforcement of building energy labelling in Italy has provided valuable in-
formation that is useful for planning the future of building energy efficiency. However, the indicators provided
through energy certificates are not suitable to support decisions, which target building energy retrofit in a
regional scale. Considering the bias of the energy performance index toward a building’s shape, decisions based
on this index will favor buildings with a specific geometric characteristics. This study tends to overcome this
issue by introducing a new indicator, tailored to rank buildings based on retrofitable characteristics. The pro-
posed framework is validated by a case study, in which a large dataset of office buildings are assigned with the
new index. Results indicate that the proposed indicator succeeds to extract a single index, which is re-
presentative of all building characteristics subject to energy retrofit. A new labeling procedure is also compared
with the conventional classification of buildings. It is observed that the proposed labels properly partitions the
dataset, according to buildings’ potential to undergo energy retrofit.

1. Introduction

As part of the climate change counterfeiting objectives of the
European Union, the Energy Performance for Buildings Directive (EPBD
recast) mandates EU Member States to promote building energy effi-
ciency [1]. Even though building energy efficiency was already en-
forced in some EU Member States [2]; the implementation of the EPBD
resulted in national and regional legislations that persuade public and
private bodies to undergo building energy audit, often by means of an
Energy Performance Certificate (EPC) [3]. The outcomes of im-
plementing EPCs has been widely investigated from various perspec-
tives: reliability and credibility of the certificates [4,5], Socio-economic
impacts [6], energy retrofit scenarios [7,8], renting and trading prop-
erties [9–11], social participation [12,13], and the impacts of EPCs on
other policies that promote building energy efficiency [14].

It has been argued that alongside other functionalities, EPCs should

also serve decision makers and energy planners at regional and national
scales [15]. As a result, studies have approached EPC outcomes from an
energy planning perspective [16–20], and underlined the necessity of
better energy efficiency policies for the building sector [21,22].
Meanwhile, it has been reasoned that relying on the wrong indicators
may lead to misconceptions on the actual status of the building stock
[23] and result in suboptimal policies [24]. The literature outlines this
issue by indicating that: the geometry of the building may have a too
strong effect on the estimated energy need [25], the relation between
the building geometry and the estimated energy consumption is non-
linear [26], and energy efficient renovation may render unrealistic as
some pivotal information could be missing from the indicators [27]. For
instance, a statistical analysis on the covariation between building
properties and the energy use intensity has revealed that the thermal
characteristics of walls can have a strong influence on the energy use
intensity, while the correlation between window characteristics and the
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energy use intensity may be difficult to comprehend [28].
Studies have previously demonstrated the positive effects of optimal

building energy retrofit on energy savings at municipal scales [29].
However, building energy retrofit planning at regional scales may face
challenges due to the misconception of EPCs as the indicators often
present the performance of the building by means of energy use in-
tensity [30]. Consequently, energy performance indicators may be
biased toward geometric characteristics of buildings [31,32], and fail to
render the actual potential of a building to undergo an energy retrofit.
This issue is particularly important in the energy retrofit planning
process, during which decision makers have to prioritize a number of
buildings that merit financial assistance while handling subsets of
multidimensional data [33]. The challenge of a ranking system dedi-
cated to retrofit potential is worth deepening since grants, tax deduc-
tions, loans and similar financial promotions have proved to be effec-
tive strategies for encouraging the public toward energy efficiency
[34–36]. Therefore, it is necessary to support energy planning with a
reliable indicator that does not merely present the energy consumption
of the building, but also maps the characteristics of one building
compared to others. Moreover, a new classification of buildings’ fea-
tures is inevitable since the conventional energy labels (classes of en-
ergy) do not necessarily reflect the thermal characteristics of a build-
ing’s envelope. To counter the bias of energy use intensity towards a
unit’s geometry, studies have proposed the application of energy
benchmarking [37]. Sun and Price introduced a classification strategy
by resorting to prototype building characteristics as the basis of retrofit
analysis [38]. This approach succeeds to rank buildings based on their
retrofitbale characteristics and overcomes the bias towards geometry.
However, a predefined database of reference buildings (similar to that
of the USEDOE [39]) is an essential part of the framework, and may not
be available for all EPC databases.

Clustering is a suitable alternative to the traditional frequency-
based classification of buildings as it can return more robust subsets
[40,41]. Building energy rating has been tackled by opting for various
clustering techniques, namely, decision tree [42], fuzzy [43], k-means
[44], as well as Gaussian, hierarchical and self-organizing maps [45].
While much progress has been achieved in obtaining better partitions
between the subset clusters, there has been no attempts to tailor Ma-
chine-Learning-based ranking techniques with building energy retrofit
in mind. Since an EPC has a high correlation with a unit’s floor area
[46], it cannot explain whether a low energy performance is related to
poor envelope characteristics, or due to high surface to volume (S/V)
ratio. Such level of information is critical for decision making in a re-
gional scale: according to the EU policies aimed at buildings’ energy
consumption, the priority in energy efficiency is to initially prevent
buildings from excessive energy use, and then promote the application
of renewable energies [47]. Therefore, a building with suitable en-
velope characteristics and a high S/V ratio should have higher priority
to receive financial aid for installing renewable systems, compared to a

competitor who has worse envelope characteristics but stands higher in
the energy efficiency rankings due to a lower S/V ratio. This issue is
significantly important since there are other parameters similar to S/V
which affect a building’s energy consumption, but cannot be subject to
retrofit. This paper tends to overcome the described challenge by in-
troducing a novel framework for ranking buildings. This ranking system
is based on a new indicator that is specifically designed to target ret-
rofitable building characteristics. Therefore, decision makers can easily
distinguish buildings which have higher merit to undergo an energy
retrofit. The proposed indicators can assist administrations in aiming
policies at specific subsets of buildings. This is essential for assessing
hypothetical funding policies, as well as creating trajectories of possible
updates in the EPC database [48]. The original scientific contributions
of this study include:

– Contrasting the ineffectiveness of the “Energy Performance index”
for ranking buildings according to retrofitable properties.

– Presenting a robust and replicable Machine-Learning-based pipeline
for extracting weighted nonlinear features from building char-
acteristics.

– Introducing the “Energy Retrofit index”; a new measure specifically
tailored to support the allocation of financial aids for boosting
building energy retrofit at regional scales.

The rest of the paper is structured in the following manner: Section
2 provides an overview on the machine learning techniques applied in
the study i.e. Multi-Layer Perceptrons, nonlinear Principal Component
Analysis and k-means clustering. Section 3 applies the framework to a
dataset of building energy certificates extracted from the Lombardy
region in Italy, and compares the results of the proposed method with
available indexes and conventional clustering techniques. Section 4
concludes the paper by summarizing the advantages of the proposed
method when compared to its predecessors, as well as applications and
possible expansions for future studies.

2. Methodology

The proposed framework resorts to three tools, which are adopted
from the field of machine learning i.e. neural networks, autoencoders
and k-means clustering. Based on the type of learning, the exploited
tools can be divided into two main categories of supervised (neural
networks) and unsupervised learning (autoencoders, k-means). The
supervised learning of the framework tends to find covariations be-
tween some input data and the targets. Unsupervised learning on the
other hand, seek structures and covariations in the input data itself. To
ensure that the study provides a clear description of the framework,
initially, each tool is briefly described.

Nomenclature

Abbreviations

EPBD Energy Performance of Buildings Directive
EPC Energy Performance Certificate
CENED Certificazione Energetica degli Edifici
KL Kullback-Leibler divergence
MAPE Mean Absolute Percentage of Error
MLP Multi-Layer Perceptron
MSE Mean Squared Error
MSEsparse Mean Squared Error of sparsity
PCA Principal Component Analysis
R2 Squared correlation coefficient

S/V Surface to Volume ratio
SoD Sum of Distances
SSE Sum Squared Error
tMLP truncated Multi-Layer Perceptron

Variables

EffG global efficiency of system [–]
EPi energy performance index [kW h/m2 y]
ERi energy retrofit index [–]
Ub average U-value of basement [W/m2 K]
Ue average U-value of walls [W/m2 K]
Ur average U-value of roof [W/m2 K]
Uw average U-value of windows [W/m2 K]
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