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A simple soil model for low frequency cyclic loading
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a b s t r a c t

A three-dimensional elastoplastic soil constitutive model capable of capturing the response of granular
soils under low-frequency cyclic loading is introduced and verified. The model is piecewise linear with
a hyperbolic stress-strain relationship. The size of the hysteresis loop is controlled using different scaling
factors with a shift in the backbone curve at load reversal. The model introduces a new algorithm to bet-
ter capture the soil’s response upon reloading for plane strain. Model verification with experimental
results at different scales shows that the model has good capabilities in capturing the response of gran-
ular soils under low frequency cyclic loading.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In classical formulations of geotechnical problems (such as
bearing capacity), the displacements to reach plastic equilibrium
are not considered, and the changes in stresses and stiffness with
deformation are not generally included. As such, when displace-
ments of a geotechnical structure are of concern or when the rela-
tive stiffness of the soil with respect to surrounding structures
controls design, it becomes necessary to mathematically formulate
the soil response to changes in stress or strain through a soil con-
stitutive model.

The mathematical formulation of the soil response requires
understanding of the behavior and coupled response of stress
changes and volumetric/pore pressure changes. Due to the degra-
dation of the soil modulus with increasing stress/strain, the nonlin-
ear response of the soil usually exhibits a hyperbolic relationship in
the stress-strain space. The first formulation of a hyperbolic stress-
strain curve for soils was based on Kondner’s argument that soil
response to drained triaxial loading in compression can be approx-
imated by a hyperbola [1]. The first implementations of a hyper-
bolic response of soils were based on either stress dependent
stiffness [2] or strain dependent shear modulus [5,6]. The formula-
tions of a hyperbolic relationship utilized the small strain modu-

lus; subsequent modifications recognized the dependency of the
small strain modulus on the mean effective confining stress [7].

Formulation of a soil constitutive model that is capable of cap-
turing the soil’s response under any loading combination, strain
rate with various drainage conditions, and boundaries is a chal-
lenging task. The challenge arises from the need to model the mul-
tiphase nature of the soil structure (solids, voids with water and/or
air) in a continuum formulation [10,1].

In general, soil constitutive models fall under three categories:
The first category is simple elastic-perfectly plastic models. In
elastic-perfectly plastic models, the initial loading curve follows
Hooke’s law up to the yield stress. At yield, the soil obeys a yield
criterion, e.g. Mohr-Coulomb. The advantage of simple elastic-
perfectly plastic models is the limited number of required param-
eters (E, t, /, c). In these models, however, the stress path depen-
dency of the soil response cannot be captured; the associated
volumetric deformation with changes of stress and the dependence
of the stiffness on stress level are not considered [10].

At the other end of the spectrum of soil constitutive models (the
third category) are advanced models that accurately capture the
soil behavior regardless of the stress path and couple volumetric
change with changes of stress level and with changes in soil stiff-
ness. The advanced constitutivemodels either implement bounding
surface plasticity such as MIT-S1 [12] or Multi Yield Surface Plastic-
itymodels [18]. The disadvantages of such advancedmodels are the
large number of parameters that require specialized testing and the
difficulty in implementing such models in a numerical framework
by practitioners, limiting their use to research applications. Pestana
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et al. [13] suggested that seven (7) tests ranging from hydrostatic
compression, to triaxial, to resonant column tests were required
to obtain the thirteen (13) parameters needed to capture Toyoura
sand behavior with the MIT-S1 model.

As such, the need arises for relatively simpler soil constitutive
models that are capable of capturing the soil response to specific
loading combinations and for specified drainage and boundary con-
ditions (the second category): Such models, however, may be only
applicable to the particular conditions forwhich they are developed.

The extension of constitutive models to capture cyclic behavior
adds to model complexity as the response of the soil to cyclic load-
ing exhibits hysteretic behavior. The well-known Massing rules
developed in 1926 and subsequent modifications have been imple-
mented in many constitutive models to capture the response of
soils to irregular cyclic loading such as those generated by earth-
quakes [15,17,8].

In this study, a simple elastoplastic constitutive model is pro-
posed to capture the soil response to cyclic loading from the
expansion and contraction of Integral Abutment Bridges (IAB); that
is, under small to moderate strains. The intent of the model is to
reasonably capture the response of granular soils while maintain-
ing the number of parameters to a minimum under these specific
loading conditions.

The proposed constitutive model is a modified version of what
was proposed by Jung [8] to study the response of retaining walls
to seismic loading. The modifications of the constitutive model
were implemented based on the observed behavior of backfill
and foundation soils of integral abutment bridges [9,4]. The modi-
fications made to the Jung [8] model are: extension of the two
dimensional model to three dimensions; rotation of the backbone
curve to account for the increase in soil pressure from abutment
movement with number of cycles; and capture of the soil response
upon reloading. The model has been implemented in Abaqus�

standard (UMAT) and explicit (VUMAT). Verification of the pro-
posed constitutive model is performed using test results from ele-
ment and physical model tests and a large-scale test of a laterally
loaded pile. Verification and calibration of the model from large-
scale tests of an integral abutment bridge and from a full scale
instrumented bridge will be presented in a future paper.

2. Development of a model for IAB structures

The proposedmodel is developed as a piecewise linear rate inde-
pendent model in the general elastoplasticity framework. The pro-
posedmodel is isotropicwith dependency of the shearmodulus and
small strain shear modulus on the octahedral shear strain and the
mean effective stress, respectively. The strain increments are
decomposed into elastic and plastic increments. The Drucker-
Prager (D-P) yield criteria with unassociated flow rule is adopted
to identify the state of stresses at which plastic strains evolve.

The relationship between stresses and strains is given based on
the following equation (Eq. (1)):

drij ¼ Ce
ijklde

e
kl ð1Þ

where
drij = incremental stress tensor,
Ce
ijkl = elastic modulus tensor, and

d�eij = incremental elastic strain tensor.

The elastic constants are written as shown in Eq. (2):

Ce
ijkl ¼

E
2ð1þ lÞ dildjk þ dikdjl

� �þ El
ð1þ lÞð1� 2lÞ dijdkl ð2Þ

K ¼ E
3ð1� 2lÞ ; G ¼ E

2ð1þ lÞ ð3Þ

where
E = Young’s modulus,
l = Poisson’s ratio,
K = bulk modulus,
G = shear modulus, and
dij = Kronecker delta and stands for 0 when i– j and for 1 when
i = j.

During elastoplastic response, the total strain increment is
equal to the summation of the elastic strain increment and the
plastic strain increment, as shown in Eq. (4):

_�totalij ¼ _�eij þ _�pij ð4Þ

where
d _�totalij = incremental total strain tensor,

d _�eij = elastic strain tensor increment, and

d _�pij = the plastic strain tensor increment.

Hardin and Drnevich [5] identified several factors that control
the degradation of the modulus of a granular soil during loading,
namely strain amplitude, mean stress, void ratio, and others such
as cementation. In addition, Hardin and Drnevich [6] proposed a
modified hyperbolic stress-strain relation to better capture soil
response which was achieved by distorting the strain scale by
defining a hyperbolic relation for the strain as shown in Eqs. (5)
and (6).

G ¼ ds
dc

¼ Go
1

ð1þ chÞ2
ð5Þ

Defining ch as:

ch ¼
c
cr

1þ a exp �bðc=crÞð Þ½ � ð6Þ

Defining cr as:

cr ¼
sf
G0

ð7Þ

where
G0 = small strain shear modulus,
c = shear strain,
cr = reference shear strain,
a and b = fitting parameters, and
sf = shear stress at failure.

The small strain shear modulus dependency on the mean effec-
tive stress is given as follows by Eq. (8):

Go ¼ Gref
o

r0
m

r0
m;ref

 !a

ð8Þ

where
r0

m = mean effective stress,

Gref
o = reference small strain shear modulus,

r0
m;ref = reference effective mean stress, and

a = constant (material-dependent).

The small strain shear modulus can be measured either directly
by means of geophysical methods (e.g. cross hole), laboratory test-
ing (resonant column), or estimated from empirical correlations.
For example, Hardin [7] proposed the following relation for granu-
lar soils (PI = 0) with 0.4 < e < 1.2:

Gref
o ¼ 625

1
0:3þ 0:7e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Par0

m;ref

q
ð9Þ
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