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a  b  s  t  r  a  c  t

Indoor  climate  control  of  thermal  comfort  for humans  in  a residential  or commercial  building  is  a  major
component  of building  energy  management.  The  goal  of optimal  temperature  and  humidity  control  is
to  ensure  indoor  comfort  with  minimal  energy  consumption.  Model-Based  Predictive  Control  (MBPC)  is
considered  to be  one  of  the  most  suited  solutions  to achieve  this  goal  due  to  its  ability  to  use  building
dynamics,  occupancy  schedule,  and weather  conditions  for optimal  control.  The  development  and  ver-
ification  of  MBPC  have  been  discussed  in  the Part  I [1]. Here,  to  validate  that  MBPC  achieves  reduced
energy  consumption,  while  simultaneously  satisfying  comfort  conditions,  experiments  are  performed  on
a quarter  scale  shelter  structure  in  a climate-controlled  environmental  chamber.  The  MBPC  method  is
compared  to three  other control  methods:  conventional  constant  temperature  setpoint  control,  sched-
uled  control  using  a Honeywell  smart  thermostat,  and  scheduled  control  using  Labview.  Temperature
variations  and  energy  consumptions  resulting  from  the four  methods  are  analyzed.  Compared  to  the
three  other  methods,  MBPC  yields  superior  control  performance  with  lowest  energy  consumption  while
still maintaining  indoor  thermal  comfort.  We  also  demonstrate  that  use  of  MBPC  can  reduce  the  number
of sensors  required  for effective  local  control.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

According to the US Energy Information Administration, Heat-
ing, Ventilation, and Air Conditioning (HVAC) systems account for
48% of US residential energy usage [2], which makes it an attractive
target for energy reduction. Excessive energy is consumed in build-
ings due to inefficiencies in building climate control technologies,
particularly in operating HVAC systems and lighting systems [3],
such as failing to set appropriate temperature setpoints and thus
consuming more energy than necessary, as well as inefficient con-
trol of fresh air intake. A report by ASEA Brown Boveri (ABB) [4]
shows that by utilizing intelligent building control strategies, 50%,
80% and 60% of energy consumption reduction can be achieved in
space heating and cooling, lighting, and ventilation, respectively.
Furthermore, considering occupancy information in the building
climate control has significant energy-saving potentials [5].

The main objective of building energy management is to mini-
mize the energy consumption while maintaining a desired comfort
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temperature. One of the effective control strategies is to include
a mathematical model in conjunction with an effective dynamic
energy response of a building system into the control strategy. In
Part I [1] we provide details of the energy modeling, the Build-
ing Energy Analysis Model (BEAM) and the corresponding reduced
order model (Re-BEAM), and the Model-Based Predictive Control
(MBPC) method. In the MBPC method, the building physics are for-
mulated as a mathematical model that is used to predict the future
status of a building according to the selected operating strategy,
weather conditions, and occupancy. The overall aim is to mini-
mize the energy consumption while maintaining comfortable living
conditions. By utilizing the MBPC method, the building’s thermal
storage capacity is exploited and future disturbances (e.g., weather
and internal heat sources) are considered in the optimization to
provide more accurate predictions. In this work, we provide the
experimental validation of the energy model and demonstrate the
energy-saving benefits of the proposed MBPC compared with other
three control methods.

A comprehensive review of theory, advantages, and applica-
tions of MBPC in building HVAC system control can be found in
[6,7]. Právara et al. [8] use a subspace method to implement model
identification and integrate the predictive control algorithm with
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Fig. 1. Structure of a typical thermostat.

a thermal model that only utilizes predictions of outside tempera-
ture. The experiment was performed on a large university building
yielding a saving of 17–24% compared to a weather-compensated
control method. Kolokotsa et al. [9] use a bilinear model-based
control in conjunction with a building energy management system
to achieve optimum indoor environmental conditions while mini-
mizing energy costs. A parameter identification method is used to
determine the coefficients in the characteristic equations, and opti-
mized operations are implemented on window shadings, window
openings, lighting system, and air conditioner. Their work demon-
strated a satisfactory controller’s performance. Ferreira et al. [10]
developed a multi-objective genetic algorithm to establish predic-
tive control and the Predicted Mean Vote (PMV) method is used
to estimate thermal comfort. The experimental results show an
energy efficiency improvement greater than 50%. Castilla et al. [11]
present a comparison among several predictive control approaches
balancing the tradeoff between thermal comfort and control efforts.
They claim that a specific weighting coefficient for the control
effort gives the best result based on a variety of experiments in
a solar energy research center. Aswani et al. [12] use a learning-
based MBPC method that considers a varying heating source due to
varying occupancy in the building climate control. The experiment
showed a reduction of electricity consumptions at both transient
and steady states. Hilliard et al. [13] analyze 19 case studies’ advan-
tages of MBPC compared with conventional control strategies, and
identify areas that need further improvements. In addition, they
develop a set of target parameters for the types of buildings that
MBPC can have the most impact on, and propose methods to iden-
tify shortfalls. Goyal et al. [14] evaluated two occupancy-based
control strategies for a HVAC system in commercial buildings and
compared against a conventional baseline controller by perform-
ing experiments in a test-zone on the University of Florida campus.
They demonstrate that a high degree of energy saving can be real-
ized with simple control algorithms that use real-time occupancy
measurements.

In recent decades, programmable thermostats have been com-
monly used in both residential and commercial buildings to control
the heating and cooling systems. A reasonable amount of energy is
saved if residents use the thermostat effectively [15]. Fig. 1 displays
the internal configuration of a typical thermostat. The temper-
ature sensor embedded in the thermostat measures the indoor
air temperature. Based on the difference between this measured
temperature and the occupant-defined temperature setpoint, the
control logic makes control decisions in heating/cooling and sends
control signals to the HVAC system. In addition to the traditional
function of regulating the indoor temperature based on a prescribed
setpoint, most smart thermostats available nowadays also include
the following two functions: enabling remote control through Wi-
Fi, which allows users to adjust configurations from anywhere, and
an “Auto Away” function, which allows the setting of a temperature
setback to reduce heating and cooling operations. Popular products

Fig. 2. Experimental thermal-control framework.

include Honeywell [16], Ecobee [17], and NEST [18]. A study [19]
shows that the NEST thermostat saves more energy than a standard
programmable thermostat. However, the control decision-making
process in all these thermostats is blind to physical information
regarding the building, particularly the building’s floor plan and
the thermal properties of construction materials.

This work is distinguished from past works in three aspects.
First, since in the experimental setup, multiple temperature sen-
sors are distributed on the interior and exterior walls and in the
interior space of a quarter scale shelter (QSS), the temperature mea-
surements are more accurate than those of other works which use
few sensors to monitor indoor temperature. This makes the valida-
tions of Re-BEAM and MBPC more accurate and reliable. Second, we
use an environmental chamber that creates a controllable environ-
ment for the QSS, where the environment temperature is regulated
and thus making the experiments reproducible. Third, the con-
trol performance of using the proposed MBPC is compared with a
commercial smart thermostat that is popularly used in residential
buildings, thus making the results practically significance.

2. Thermal-control framework overview

BEAM is a program written in Matlab that simulates the dynam-
ics of temperatures and humidities of indoor air and walls of a
building and calculates the energy consumption over a specific
time period. Re-BEAM is the reduced order model of BEAM. Details
regarding BEAM and Re-BEAM are given in [1]. In the MBPC method,
Re-BEAM is used for simulations. The inputs to Re-BEAM include
the local weather conditions, the building’s geometry information,
details of construction materials, and occupants information. An
optimal control algorithm has been integrated into Re-BEAM to
enable MBPC of HVAC systems in buildings [1]. The objective of
using MBPC is to optimize the desired temperature schedule so
that the energy consumption is minimized while comfort indoor
conditions are maintained.

Fig. 2 shows the overall thermal-control framework in the
experiments. As can be seen, the function of Labview and Mat-
lab together serves as the “Smart Thermostat.” Labview receives
information on monitored parameters from the sensors installed in
the experimental setup. A user-friendly Labview interface allows
the input of desired temperature schedules. Matlab acts as a
“schedule optimizer,” which runs the Re-BEAM code and the inte-
grated MBPC algorithm. This “schedule optimizer” receives the
occupant-defined temperature schedule from Labview, performs
the model-based predictive optimization, and outputs the opti-
mized schedule to the Labview program. The temperature setpoint
in the optimized schedule is the control variable for the heat-
ing/cooling system, and this optimized schedule is presumed to
result in minimal energy consumption while satisfying thermal
comfort conditions. Note that the use of Labview in the experi-
ments in the present work is to send control signals to the HVAC
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