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a  b  s  t  r  a  c  t

Low  energy  buildings  (LEBs)  are  being  considered  as  a promising  solution  for  the  built  environment  to
satisfy  high-energy  efficiency  standards.  The  technology  is  based  on lowering  the  overall  heat  transmis-
sion  coefficient  value  (U-value)  of  the  buildings  envelope  and  increasing  a heat  capacity  thus  creating  a
higher  thermal  inertia.  However,  LEB  introduces  a large  time  constant  compared  to conventional  building
due  to  which  it slows  the  rate of heat  transfer  between  interior  of  building  and  outdoor  environment  and
alters  the  indoor  climate  regardless  of  sudden  changes  in  climatic  conditions.  Therefore,  it is challenging
to  estimate  and  predict  thermal  energy  demand  for  such  LEBs.

This  work  focuses  on  artificial  intelligence  (AI)  model  to  predict  energy  consumption  of LEB.  Two  kinds
of  AI  modeling  approaches:  “all  data”  and  “relevant  data”  are  considered.  The  “all data”  uses  all  available
training  data  and  “relevant  data”  uses  a  small  representative  day  dataset  and  addresses  the  complexity  of
building  non-linear  dynamics  by introducing  past  day  climatic  impacts  behavior.  This  extraction  is based
on dynamic  time  warping  pattern  recognition  methods.  The  case  study consists  of  a  French  residential  LEB.
The numerical  results  showed  that  “relevant  data”  modeling  approach  that  relies  on  small  representative
data  selection  has  higher  accuracy  (R2 =  0.98;  RMSE  =  3.4)  than  “all  data”  modeling  approach  (R2 =  0.93;
RMSE  =  7.1)  to  predict  heating  energy  load.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The energy efficiency of buildings has drawn significant atten-
tion in the recent years as a tool to reach a reduction of energy
consumption. According to the European Union (EU), the building
sector represents 40% of the total energy consumption resulting in
36% of CO2 gas emissions [1]. It is estimated that residential build-
ings account for 25% of the final energy consumption in the EU [1].
This energy consumption varies depending on the materials used
in the walls and roofs of buildings affecting the heat transfer mech-
anisms. Low heat transfer materials in the building’s envelope help
to improve the energy efficiency resulting in low energy building
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(LEB) or passive house, by lowering the heat transfer coefficient
(U-value).

In the case of a LEB, the high insulation level increases the impor-
tance of heat gains from lighting and solar radiation. Due to lower
U-value materials in LEBs, it dampens the indoor temperature fluc-
tuations throughout the day resulting in an equilibrium indoor
climate. In addition to this, the lower U-value increases the ther-
mal  resistance of the building by resulting in a slower heat transfer
between the walls and indoor, and introduces a large time constant.
Because of a large time constant as well as large heat capacity in
LEBs compared with conventional buildings, it retains thermal gain
from past climatic changes. Therefore, an estimation and prediction
of LEB’s thermal energy demand is quite challenging.

There are various prediction models based on physical, semi-
physical and data-driven methods available to estimate and predict
the thermal energy demand for different energy standard build-
ings. Physical methods estimate the energy demand of a building
from known parameters, i.e., detailed geometrical information and
thermal properties of the building. Several physical building sim-
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ulation tools such as TRNsys [2], ESP-r [3], EnergyPlus [4] etc. are
available to the estimate energy demand of buildings. These types
of methods are suitable for an early stage of building design and
energy consumption estimation. In order to reduce model equa-
tions in physical methods, semi-physical methods, for example,
response factor method, transfer function method, frequency anal-
ysis method and lumped electrical analogy, i.e., resistance and
capacitance method exist today [5]. These semi-physical methods
also require detailed understanding of building thermal dynam-
ics but overcome the limitation of physical method due to less
complexity in physical parameter.

In case of data-driven models, they rely on data from empirical
thermal behavior of buildings or data acquired from dynamic ther-
mal  energy simulations under various environmental conditions.
For such models, physical properties or thermal performance of
buildings or systems are known, and then important parameters
are identified by statistical analysis. Simple statistical and regres-
sion methods seem more feasible to estimate the energy demand,
but they are not quite as accurate as to represent non-linear behav-
ior of building dynamics particularly LEB. In recent years, machine
learning based artificial intelligence (AI) models like artificial neu-
ral network [6–9] and support vector machine [6–8,10] are used to
estimate energy demand. These AI methods have some drawbacks
compared to physical methods. For instance, AI methods cannot be
built for an early stage of new building, and hence they miss the
physical understanding. However, these AI methods have several
advantages over physical and semi-physical methods. Firstly, both
physical and semi-physical methods are highly parameterized due
to their interactions between systems on various modes of heat
transfer requiring more input information. All the physical thermal
properties of building are not always known hence impracticable
for Energy Services Company (ESCOs) and/or Building Energy Man-
agement System (BEMS) for planning and control use. Secondly,
they are good in learning the response of a building energy system.
Finally, they have a strong capability of being adaptive to update
the model parameter to take into account dynamic environment of
future conditions.

Before implementing an AI-based method, there are more
essential research questions: how to introduce such past climatic
impacts behavior and how to consider the amount of data. Accord-
ingly, machine learning based AI models can be built with two
kinds of approaches: “all data” and “relevant data”. The approach
is defined “all data” if all the available data (measurement or
empirical behavior of building data) are used for model training
to determine the parameters of model. For such model, the param-
eters are fixed for the considered building independently of the
prediction day and future environment conditions. On the other
hand, the approach is defined “relevant data” if the pre-selection
of data is done initially for model training based on prediction
day conditions. For such model, the data used for model training
are reduced based on the relevance, and parameters of model are
changed for the considered building by each prediction day condi-
tions. This type of approach is also named as “few representative
data” since it selects small data to build a model. There are three
major reasons to consider “relevant data” compared to “all data”.
Firstly, all data used for model training contain similarities and dis-
similarities of input patterns behaviors and some of the information
might be redundant. Secondly, a predictive model takes a lot of
time for model training when all the data are used. Finally, with
the adaptability of growing this model in the future, the newest
environment and climatic conditions have probably more useful
information, which is not considered in “all data” approach due
to its computational complexities. The effect of this new infor-
mation is neglected to update the model parameter. In order to
update the model parameters in “all data” approach, the initial
learning algorithm should be modified to complex learning algo-

rithm. In this paper, learning mechanism in “all data” approach is
called “offline learning” since model parameters are not updated
with new datasets. On the contrary, the “relevant data” approach
uses both “offline” and “online” learning: The “offline learn-
ing” selects few representative data from all fixed available data
whereas “online learning” selects few representative data from
all updated available data so that it updates the model parameters
with the new dataset and adapt to changing environment.

For instance, “relevant data” approaches based on similar
trends of prediction day climatic conditions were used by various
authors [11–15] to select small representative data for electricity
energy consumption. All these methods determine the similarity
of selected individual variables based on the Euclidean distance
between prediction day with training day. They are then further
multiplied by weight factors of each selected variable to select rep-
resentative day for model training. The weight factors of selected
variables were determined using least square method (LSM) based
on regression model. Paudel et al. [10] used outside air tem-
perature of prediction day to select “few representative data”
to predict heating load for an office building. Authors [16,17]
used electrical energy load and climatic data of prediction day to
select small representative data to build an AI model.  For these
authors as well, weight factors of selected variables were deter-
mined using LSM based on regression model.  Heating degree-day
(HDD) and cooling degree-day (CDD) measured in ◦C/day were used
by Roldan-Blay et al. [18] to select small representative data using
estimated HDD and CDD of prediction day to predict electrical load.
Various authors [19–28] used clustering/classification methods
to select few representative data from particular clusters/classes
based on estimated daily average energy load of prediction day and
energy load of previous day from prediction day for model training.
The detailed variables used to select small representative day data
for model training are summarized in Table 1.

Although previously studied methods have advantages due to
small representative data selection, there are still some limitations.
First, the methods that focus on selection of “few representative
data” do not consider past day climatic conditions due to large time
constant of building (for example, more than 100 h in LEBs [29])
which is an essential factor for LEBs. Second, these methods do not
consider the solar gain impact. Finally, the methods that are based
on daily average energy load of prediction day or previous day to
select representative data are not suitable for LEBs. If the learn-
ing mechanism of prediction model is not only for a day ahead
but also for a longer period in advance, then the prediction models
will rely on previously predicted daily average energy load values,
and errors will be accumulated. Thus, it is not pragmatic for real
applications. To bridge the aforementioned research gap, this paper
aims to develop a prediction model from hours to couple of days
(or even for longer periods depending upon the forecast range of
climatic conditions) using few representative data for model train-
ing that include the influence of many past day climatic conditions
applied to LEBs. The other objectives are to compare the developed
methodology with existing methods, i.e., “relevant data” approach
to select few representative data using LSM based on regression
and “all data” approach. Consequently, this paper selected sup-
port vector machine (SVM) as machine learning AI model since it
provides global optimal solutions and higher generalization per-
formance compared to neural networks because of its non-linear
problems solving by empirical risk minimization [30].

2. Methodology

The initial step of our methodology is the collection of build-
ing energy consumption, climatic variables, occupancy profile, and
building operating conditions data (e.g., set-point temperature,
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