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a b s t r a c t

This paper presents a new discrete physical model to approach the problem of cracked beam vibrations.
The model consists of a beammade of several small and evenly spaced bars. The beam bending stiffness is
modeled by spiral springs that serve also as a crack model. Concentrated masses presenting the inertia of
the beam are located at the bar ends. This model has the advantage of simplifying parametric studies,
because of its discrete nature, allowing easy modification in the crack position and magnitude.
Therefore, once the model is established, various practical applications may be performed without the
need to go through all the formulations again. As a result, this model allows conducting a parametric
study with the objective of facilitating the diagnostics process involving both crack localization and depth
estimation.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration analysis of cracked beams is of a great interest in
many fields, especially in civil and mechanical engineering. Various
methods applied to the modeling of such problems have been
addressed in the literature. A discrete model, such as the one pre-
sented in this paper, may be useful in multiple engineering appli-
cations due to its adaptability and ability to simplify the
parameters variation.

Discretization method, such as the Finite-Element Method
(FEM), is one of the most commonly used methods for analysis of
large structures [1–4]. However, continuous models may be more
efficient for a single beam. In general, the crack model is presented
as a loss in stiffness in the crack location, where the stiffness vari-
ation is essentially due to stress concentration in the crack vicinity
[5,6]. Dimagoronas, in his state of the art [7], detailed the evolution
of cracked beam models. In the mid-twentieth century, Irwin [5],
Bueckner [8], Westmann and Yang [9] linked local flexibility to
the crack stress intensity factor (SIF). Thus, by analyzing experi-
mental results, they established a method for calculating the SIF

based on the local bending stiffness (the inverse of the local flexi-
bility) of a cracked rectangular beam.

Crack modeling is important in establishing a relationship
between the crack location and depth, and the structural response.
Chondros and Dimarogonas [10,11], and Dimarogonas and Mas-
souros [12] developed a frequency spectral method for the identi-
fication of a crack based upon the results of fracture mechanics and
the spiral spring model. This method established a link between
the crack depth and the change in the natural frequencies of the
first three harmonics of the structure for a known crack position.
Moreover, an experimental technique for crack identification using
natural frequencies was developed by Adam and Cawley [13,14].
Yang [15] proposed a method for crack detection based on the
superposition of the frequencies obtained from the crack frequency
response for two to three modes. More recently, Barad et al. [16],
Gillich and Praisach [17], and Maghsoodi et al. [18] improved the
crack detection procedure based on the frequency response func-
tion. On the other hand, Nguyen [19] introduced a new method
for crack detection using the distortion occurring in the mode
shape around the crack position.

In this paper, a theoretical discrete model is used to approach
cracked beam vibration. The beam is presented by bars, masses,
and spiral springs. Since the model is composed of a multitude of
springs, each one may correspond to a crack. The cracks locations,
number, and magnitude may be modified at will. Section 2 intro-
duces the general theory, including details of the discrete model
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assumptions, and parameters calculations. Section 3 is devoted to
the validation of the crack model for simply supported, clamped,
and cantilever beams. Finally, Section 4 presents a crack detection
procedure based on the present model.

2. General theory

A discrete model of a beam consisting of bars, concentrated
masses, and rotational springs located at the bar ends was pre-
sented by Rahmouni et al. [20] to approach the vibrations of a con-
tinuous beam using different assumptions. Since the models of
fracture mechanics present cracks as spiral springs, this approach
may be useful in establishing a new model to study the vibration
of cracked beams.

2.1. General formulation

A crack is an opening that usually occurs when an element
reaches its tensile limit. Therefore, it may or may not be accompa-
nied by a loss of matter. Thus, to approach the crack macroscopi-
cally, Fig. 1, the beam is presented as a series of small bars
where the rth bar, corresponding to the crack, has a smaller depth.

By adapting the model introduced in [20] for nonlinear vibra-
tions of uncracked beams, a new model is developed here for
beams with n cracks located at n different positions along the
beam. The present model consists on the N-degree-of-freedom dis-
crete model shown in Fig. 2, with N masses m1; . . . ;mN; located at
the ends of (N + 1) rigid bars, connected by (N + 2 � n) spiral
springs simulating the beam bending stiffness. The n cracks are
modeled by n spiral springs simulating the cracks reduced stiff-
ness, estimated using the model presented in Fig. 1. The stiffness
of the rth spring is denoted by Cr , for r ¼ 1 to ðN þ 2� nÞ), and

the stiffness coefficient of theith spiral spring, presenting the ith

crack, is denoted by Cc
i ; for i ¼ 1 to n. The bending moment M in

the rth spiral spring connecting the bars (r � 1) is given by:
M ¼ �CrDh; Dh ¼ hr � hr�1 being the angle between the bars adja-
cent to the node r.

The displacement vector presenting the vertical displacements
of the N masses, Fig. 2, may be written as follows:

fyg ¼ y1fd1g þ y2fd2g þ . . .þ yifdig þ . . . yNfdNg ð1Þ
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Fig. 1. crack model.

Nomenclature

a crack depth
aj contribution coefficient of the jth linear mode shape in

DB for the discrete system
fAg displacement amplitudes of the masses m1; . . .; mi; . . .;

mN in DB
Cr the stiffness coefficient of the rth spiral spring
Cc
i the stiffness coefficient of the ith crack

DB displacement basis
dij the Kronecker’s symbol
fdig the ith displacement vector in DB
E the modulus of elasticity or the Young modulus of the

bar’s material
h the thickness of the bar in (m)
I the second moment of area relative to the neutral fibre

for the cross section in (m4)
Icr the second moment of area of the reduced beam relative

to the neutral fibre for the cross section in (m4)
½I� the identity matrix
ksij the general term of the linear rigidity tensor in DB

(spiral spring)
½Ks� matrix of linear rigidity in DB (spiral spring)
½KSS

N � linear rigidity matrix of the N-DOF discrete system
presenting a simply supported beam

½KCC
N � linear rigidity matrix of the N-DOF discrete system

presenting a clamped–clamped beam
½KCC

N�2� linear rigidity matrix of the N-2-DOF discrete system
presenting a clamped–clamped beam

½KCF
N � linear rigidity matrix of the N-DOF discrete system pre-

senting a clamped–free beam

½KCF
N�1� linear rigidity matrix of the N-1-DOF discrete system

presenting a cantilever beam
li length of the ith bar in (m)
L total length of the beam
mij the general term of the mass tensor in DB
½M� matrix of masses in DB
M moment in the spiral spring
N number of degrees of freedom (number of masses)
S the area of cross section for uniform beam in (m2)
T the kinetic energy
V the total potential energy
Vs
l the beam bending strain energy

Vl the linear potential energy
W beam transverse displacement
c the crack distance on the beam
yi transverse displacement of the ith mass in DB
bi the ith eigenvalue of the rigidity
hr the angular displacement of the adjacent bars at the rth

node in (rad)
q mass per unit volume of the bar (kg/m3)
ni the dimensionless crack depth ratio at the ith position.
xSS

discr the frequency of the discrete system in the case of
simply supported beam

xCC
discr the frequency of the discrete system in the case of

clamped beam
xCF

discr frequency of the discrete system in the case of
cantilever beam
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