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a b s t r a c t

A modular Bayesian method is applied for structural identification of a reduced-scale aluminium bridge
model subject to thermal loading. The deformation and temperature variations of the structure were
measured using strain gauges and thermocouples. Feasibility of a practical, temperature-based,
Bayesian structural identification is highlighted. This methodology used multiple responses to identify
existent discrepancies of a model, calibrate the stiffness of the bridge support and establish uncertainty
of a predicted response. Results show that the inference of a structural parameter is successful even in the
presence of substantial modelling discrepancies, converging to its true physical value. However measure-
ments should have a high dependency on the calibration parameters. Usage of temperature variations to
perform structural identification is highlighted.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The capability of a structural health monitoring (SHM) system
to interpret monitored data is the main factor that dictates its per-
formance and its usefulness to owners and local authorities.

Interpretation of the data using a physics-based model is advan-
tageous because its development and usage as a predictive tool
agrees with engineering knowledge, making it more understand-
able. However the main disadvantage is that the model has to be
calibrated, before it can be used as a predictive tool. Moreover,
using a deterministic model, i.e. a model where input parameters
and response outputs are deterministic, rarely correlates well with
real data, due to the complexity and inherent uncertainties of this
latter one. Hence in most situations a probabilistic approach is
more realistic [1] and methods such as model falsification [2],
fuzzy numbers [3], Kalman filters [4], sampling methods [5], Mar-
kov processes [6] amongst others [7] have been developed for this
purpose.

Bayesian inference is the basis of a class of well known methods
which also allow to perform structural identification. Beck [8,9] is
known as one of the pioneers of the application of Bayesian meth-
ods in SHM. Numerous research works have been conducted on the

basis of this initial framework [10,11]. Based on this research, two
fundamental problems might be thought as to why Bayesian meth-
ods were not widely applied in SHM practice. Firstly, the model
parameters to be calibrated are often assumed as fixed physical
properties of the infrastructure, while in reality these properties
change due to external factors such as traffic and environmental
variations [12], e.g. stiffness of the structure. Secondly, uncertain-
ties due to modelling errors are only partially considered, despite
being ubiquitous. They can be caused by: (a) discrepancy between
the behaviour of a physics-based model and that of the real struc-
ture; and (b) numerical error in solving the partial differential
equations (e.g. finite element method and mesh discretization).
Component (a) is extremely difficult to quantify. Most of the pre-
sent research [13,14] usually disregard this form of uncertainty
or consider it as zero mean Gaussian distributed [6]. Only a limited
number of authors in the SHM community, namely Higdon [15]
and Simoen [16] have applied Bayesian methodologies under this
scope. Model-based Bayesian structural identification with tem-
perature variations is also considerably scarce in the literature
[17,12].

Higdon applied a comprehensive modular Bayesian method
originally developed by Kennedy and O’Hagan (KOH) [18,19],
which was not widely accepted, presumably because of a lack of
identifiability [20,21]. Identifiability is understood as the capability
of inferring the true value of model parameters that represent a
physical property, e.g. Young modulus, based on available data.
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Arendt et al. [22] suggested an improvement to the KOH original
formulation to solve the identifiability problem, by using moni-
tored data with diversified responses. This approach was validated
on a simulated simply supported beam. We believe that this for-
mulation is very comprehensive to quantify existent uncertainties
and superior in some aspects to the ones used in previous works.

Based on this resurgent interest of the modular Bayesian
method, the present work focus on its practical application for
structural identification using thermal variations. Studies on
advantages of using temperature loading for structural identifica-
tion can be found in the works of Laory [23,24] and Yarnold [25].
The objective at hand is to test the performance of the improved
algorithm on a scale aluminium bridge model subject to thermal
loading. To the best of our knowledge, this test is the first practical
application of this methodology, particularly for temperature-
based structural identification.

Some of the advantages of using a scale model case study are:
more realistic conditions, e.g. noise, inherent randomness and
residual deformation of temperature loading; known structural
parameters can be used to test the reliability of the methodology;
possibility of easily testing different measurement scenarios; dam-
aging the structure is permissible and allows to easily test damage
identification methodologies.

This paper is organised as follows: In Section 2, a description of
the model calibration formulation is given; Section 3 describes the
aluminium bridge and its finite element (FE) model, presents a sen-
sor placement analysis, application of the method and its results,
and finally, Section 4 highlights the conclusions of the present
work.

2. Model calibration formulation

This section describes the model calibration approach. A more
detailed description can be found in [22]. An introduction to Gaus-
sian process emulation is presented in Appendix A. An outline of
the general formulation is given in the next subsection followed
by a brief overview of the algorithm and of the numerical
approach. To a more in depth description of the uncertainties con-
sidered by this methodology see Section 2 of [20].

2.1. Observation and numerical model equations

Let us now assume that a given continuous process n has n
observations of q responses Ye and is dependent on d design vari-
ables Xe. Its observation equation can be written as

YeðXeÞ ¼ nðXeÞ þ e ð1Þ
where eT ¼ ½e1; . . . ; en� is an observation error that is assumed to fol-
low a Gaussian distribution NðO;KÞ. On the other hand the unob-
servable process nðXeÞ is described using a numerical model Ym as
follows

nðXeÞ ¼ YmðXe; h�Þ þ dðXeÞ ð2Þ
where dðXeÞ is a discrepancy function that translates the difference
between the model and the true process, YmðXe; h�Þ is the model
output and h� are a r-dimensional vector of structural parameters.
This equation is an ideal state of the model (i.e. the model is suc-
cessfully calibrated) when the model parameters h take the values
h�. Although our example updates only one parameter, the method-
ology can also consider multiple parameters, which is a common
scenario in civil infrastructures [26,27,13].

It is important to mention that the discrepancy function is inde-
pendent of the model output and is an unknown of the problem as
well as the structural parameters. Now substituting equation num-
ber (2) in equation number (1) results in

YeðXeÞ ¼ YmðXe; h�Þ þ dðXeÞ þ e ð3Þ
which is the fundamental equation of the model calibration. Equa-
tion number (3) represents the process output to an input Xe within
a domain of a calibrated status h ¼ h�, representing the best fit with
the observed data.

The numerical model and the discrepancy function shall now be
replaced by multiple response Gaussian processes (mrGp), whose
hyperparameters have to be determined (see the Appendix for a
definition and details). These hyperparameters characterise the
mrGps and account for an approximation of its associated uncer-
tainties, such as: variability of the numerical model; modelling dis-
crepancies and observation error.

One way of determining the hyperparameters is by applying a
Bayesian approach, which fully accounts for all the considered
uncertainties and determines all the hyperparameters at the same
time. However this implies a significant computational effort and
is not recommended [28]. Instead a modular Bayesian approach
shall be used, and is described in the following section.

2.2. Modular Bayesian approach

A modular Bayesian approach (MBA) separates the calibration
process into four modules, on which the mrGp hyperparameters
are estimated separately and progressively [29] as detailed in
Fig. 1 (based on Fig. 5 from [20]).

Fixing the hyperparameters at an estimated value reduces the
degree of approximation of the uncertainties covered by the mrGp.
By doing so, the ‘second order’ effect of those uncertainties is being
neglected. This means that preference has been given to recognise
all of these sources of uncertainty, to a certain extent at a lower
computational cost, rather than fully accounting for the uncertain-
ties, with a considerable increase of computational effort.

This act of estimating and fixing the hyperparameters is applied
progressively, when moving from module 1 to module 2 and from
module 2 to module 3. Estimation is done with numerical optimi-
sation methods by maximising the likelihood between the mrGp
and the available data.

In our case we used a MATLAB genetic algorithm (GA) routine.
An initial population of size 40 was generated in the [0–1] range,
with default values for Gaussian mutation function (mean 0, stan-
dard deviation 1 and shrinkage of the standard deviation as gener-
ations go by 1) and scattered crossover function (0.8 fraction of the
population at the each next generation). Convergence criteria are
set as either a maximum number of 100 generations or an average
change in the fitness value less than 1� 10�6.

It is important to stress that the discrepancy function is not
being updated i.e. it is not the same as a GA fitness function.
Instead the GA in module 2 (see Fig. 1) aims to estimate the param-
eters of a statistical model (a Gaussian process), that approximates
the discrepancy function. This is done through maximum likeli-
hood estimation (MLE), which implies that the fitness function of
the GA is the likelihood function.

In module 3, Bayes’ theorem is used for approximating the pos-
terior distribution of h. In contrast to other approaches mentioned
in the introduction, its likelihood function contains the two mrGp
approximated in modules 1 and 2, now with its hyperparameters
fixed.

3. Aluminium bridge subjected to thermal loading

In this case-study a reduced-scale laboratory aluminium bridge
inspired by the New Joban Line Arakawa (Japan) railway bridge,
was built at the Warwick Civil Engineering Laboratory and sub-
jected to thermal loading due to infrared heaters. Typical daily
ambient temperature in the laboratory ranged from 291.15 K up
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