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a b s t r a c t

In this paper free vibrations of rotating cylindrical shells with both ends free are studied. The model used
also allows for considering a flexible foundation supporting the shell in the sense of a radial and circum-
ferential distributed stiffness. Furthermore, a circumferential tension (hoop stress) which may be due to
pressurisation or centrifugal forces is taken into account. Natural frequencies and mode shapes are deter-
mined exactly for both stationary shells and for shells rotating with a constant angular speed around the
cylinder axis. Trigonometric functions are assumed for the circumferential mode shape profiles, and a
sum of eight weighted exponential functions is assumed for the axial mode shape profiles. The functional
form of the axial profiles is shown to greatly vary with the roots of a characteristic bi-quartic polynomial
that occurs in the process of satisfying the equations of motion. In the previously published work it has
been very often assumed that the roots are two real, two imaginary, and two pairs of complex conjugates.
In the present study, a total of eight types of roots are shown to determine the whole set of mode shapes,
either for stationary or for rotating shells. The results using the developed analytical model are compared
with results of experimental studies and very good agreement is obtained. Also, a parametric study is car-
ried out where effects of the elastic foundation stiffnesses and the rotation speed are examined.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamics of shells have been an active research topic for well
over a century. Some early works dating from the 19th century
[1–5], were followed by the developments in the 20th century
[6–19]. Many geometries occurring in various engineering struc-
tures can be seen as shells. Among these, circular cylindrical shells
form a particular class. It is often the case that a cylindrical shell
spins around its axis, which makes its dynamic behaviour more
complex. Rotating shell structures are found in engineering appli-
cations such as rotor systems of gas turbine engines, high-speed
centrifugal separators, rotating satellite structures, and automotive
tires, to name a few.

Early studies on rotating cylinders include the work of Bryan
[20] who studied vibrations of a rotating ring and described the
travelling modes phenomenon. Di Taranto and Lessen [21], and
also Srinivasan and Lauterbach [22] studied Coriolis and centrifu-

gal effects on infinitely long rotating cylindrical shells. Zohar and
Aboudi [23], and also Saito and Endo [24] presented such investi-
gations on finite long rotating cylinders. Endo et al. [25] performed
an experimental study of flexural vibration of a thin rotating ring.
Padovan [26] studied the free vibration of rotating cylinders sub-
jected to pre-stress. Kim and Bolton also considered the effects of
rotation on the dynamics of a circular cylindrical shell [27]. They
suggested that the model may be used to predict the characteris-
tics of a rotating tire after performing a kinematic compensation
on the results of a stationary tire analysis. Huang and Soedel [28]
used the nonlinear strain displacement relationships of Herrmann
and Armenakas [29] and the corresponding set of equations of
motion for a spinning shell in the co-rotating reference frame.
The authors have solved the free and forced vibration problem
assuming simply supported boundary conditions (the so-called
shear diaphragm boundary conditions). This is a favourable type
of a boundary condition from a mathematical point of view. This
is because mode shape axial profiles do not exhibit a change of
their functional form. Thus simple sine or cosine functions of the
axial coordinate may be used [18,19,27–30]. The natural frequen-
cies can be calculated as roots of a characteristic polynomial, which
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was shown to be bi-cubic if the shell does not rotate. In case the
shell spins at a constant speed, also the odd coefficients of the
polynomial occur. Thus in case of a non-rotating cylindrical shell
this bi-cubic polynomial has three pairs of roots where each pair
consists of a positive and a negative natural frequency having the
same absolute value. Physically this underlies the existence of
the backward and forward rotating modes that superimpose into
‘‘regular” vibration modes in case the cylinder is stationary. With
spinning cylinders the six natural frequencies have distinct abso-
lute values, and thus the rotating modes occur [28]. The three pairs
of positive and negative frequencies correspond to three types of
modes, which could be named bending modes, longitudinal modes,
and shear modes. This classification is based on whether the radial,
axial, or circumferential displacement component is the most
prominent in a particular vibration pattern.

In general, short expressions for calculating natural frequencies
of either rotating or stationary cylindrical shells are not possible if
no further simplifications or assumptions are made to reduce the
order of the characteristic polynomial [17,19,31–33]. For example,
the Donnel-Mushtari-Vlasov equation can yield a reasonably short
closed form expression for natural frequencies of a non-rotating
cylindrical shell provided that simply supported boundary condi-
tions are assumed [19].

However, in case of other boundary conditions the situation
complicates. Consequently a number of studies have also been
dedicated to vibration of cylindrical shells with other types of sim-
ple boundary conditions [34–37]. For example, Chung expressed
the displacements as product of Fourier series for the axial modal
displacements and trigonometric functions for the circumferential
modal displacements. The author used Stokes’ transformation to
obtain expressions for derivatives of the Fourier series [37]. Bound-
ary conditions such as free-free, clamped-free and clamped-
clamped are considered in the study. This methodology has been
recently extended by Sun et al. [38] to rotating cylindrical shells
including the effects of centrifugal and Coriolis forces and the ini-
tial hoop tension. Alternatively, the Rayleigh–Ritz method can be
employed to derive the frequency equations of rotating cylinders.
Utilising the Rayleigh–Ritz method, Sun et al. [39] took the charac-
teristic orthogonal polynomial series as the admissible functions
with classical homogeneous boundary conditions, or with more
general boundary conditions, by utilising artificial springs to simu-
late the elastic constraints imposed.

An exact approach to deal with other types of boundary condi-
tions has been used by Warburton [36]. He analysed the free vibra-
tion problem using Flügge equations and considered either both
ends clamped or both ends free of a non-rotating cylindrical shell.

A number of mode shapes and natural frequencies were calculated
in [36] by assuming identical boundary conditions at the two ends
of the shell, and analysing separately symmetric and anti-
symmetric modes. The author considered the case where the roots
of the characteristic polynomial are of a particular form: two real,
two imaginary and four complex.

A complete analytical solution for free vibrations of a circular
cylindrical shell of finite length, supported by an elastic founda-
tion, having both ends free, either stationary or rotating, is given
in this paper. The equations of motion are based on the strain-
displacement relationships of Hermann and Armenakas [29]. It is
shown that it is necessary to consider eight types of roots of the
characteristic polynomial in order to derive eight types of mode
shapes. All types of modes may occur with both non-rotating and
spinning shells having free ends. For each mode shape type the
free-free boundary conditions are satisfied exactly. In order for
the boundary conditions to be satisfied, the determinant of the
boundary condition matrix must vanish. This fact is used to deter-
mine the natural frequencies of both stationary and rotating shells.

The paper is structured into five sections. The mathematical
model is developed in the second section. The free vibrations of
an example rotating shell are discussed in the third section. The
third section also contains a comparison of the analytical results
to results of different experimental studies. The fourth section is
dedicated to a parametric study where the effect on the natural fre-
quencies of different parameters of the model is studied. Appendix
to the paper contains various coefficients needed to shorten the
main expressions in the paper expressed as a function of the mate-
rial and geometrical shell parameters.

2. Mathematical model

The rotating cylindrical shell is shown schematically in Fig. 1.
Assuming the free vibration problem the equations of motion

are [28,29]:
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Fig. 1. The rotating cylindrical shell.
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