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h  i g  h  l  i g  h  t  s

• The  frequency  equation  of isotropic  multi-layer  hollow  spheres  was  derived  using  three-dimension  (3D)  elasticity  theory  and transfer  matrix  method.
• The  natural  frequencies  of  the capsules  with  a millimeter-sized  diameter  are  determined  experimentally  using  resonant  ultrasound  spectrum  (RUS)

system.
• The  predicted  natural  frequencies  of the  frequency  equation  accord  well  with  the observed  results.
• The  theoretical  and experimental  investigation  has  proved  the  potential  applicability  of RUS  to both  metallic  and  non-metallic  capsules.
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a  b  s  t  r  a  c  t

The  natural  frequency  problem  of laser  inertial  confinement  fusion  (ICF)  capsules  is  one  of the  basic
problems  for determining  non-destructively  the elasticity  modulus  of each  layer  material  using  res-
onant  ultrasound  spectroscopy  (RUS).  In  this  paper,  the  frequency  equation  of  isotropic  one-layer
hollow  spheres  was  derived  using  three  dimension  (3D)  elasticity  theory  and  some  simplified  frequency
equations  were  discussed  under  axisymmetric  and  spherical  symmetry  conditions.  The  corresponding
equation  of  isotropic  multi-layer  hollow  spheres  was  given  employing  transfer  matrix  method.  To confirm
the validity  of the  frequency  equation  and  explore  the  feasibility  of RUS  for characterizing  the  ICF  capsules,
three  representative  capsules  with  a millimeter-sized  diameter  were  determined  by piezoelectric-based
resonant  ultrasound  spectroscopy  (PZT-RUS)  and  laser-based  resonant  ultrasound  spectroscopy  (LRUS)
techniques.  On  the  basis  of both  theoretical  and  experimental  results,  it is  proved  that  the  calculated  and
measured  natural  frequencies  are  accurate  enough  for determining  the  ICF  capsules.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In laser inertial confinement fusion (ICF) experiments, a spher-
ical capsule, which is made from glass, polymer, beryllium or
high-density carbon, is employed as the thermonuclear reaction
container. A representative capsule for SG-III Facility in China is
shown in Fig. 1. The capsule is an isotropic three-layered hol-
low microsphere filled with deuterium-tritium (D-T) fuel gases.
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The outer diameter and total wall thickness of capsule is about
1000 �m and about 100 �m,  respectively. The material of each layer
is polystyrene (PS), polyvinyl alcohol (PVA) and glow discharge
polymer (CH), respectively.

In order to achieve the required implosion efficiency, there
are many specifications that need to be fully characterized for
the capsules, such as geometrical structures, sphericity, outer and
inner surface roughness, dopant concentration, impurity level and
deuterium-tritium (D-T) fuel content [1–4]. Increasing evidences
show that the elastic modulus of material is a key physical quantity
for understanding the physical nature of material and controlling
their mechanic and dynamic properties [5]. Consequently, it is of

http://dx.doi.org/10.1016/j.fusengdes.2016.12.007
0920-3796/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.fusengdes.2016.12.007
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2016.12.007&domain=pdf
mailto:dgaocn@163.com
dx.doi.org/10.1016/j.fusengdes.2016.12.007


92 X. Ma et al. / Fusion Engineering and Design 114 (2017) 91–96

Fig. 1. The diagram of a representative capsule for SG Facility.

critical importance to measure accurately the elastic modulus of
ICF capsule for controlling the quality of capsule. Due to the com-
plicated structure of ICF capsule, the accurate and nondestructive
determination of elastic modulus of each layer material in a mea-
surement is considered as one of the most challenging problems in
ICF target characterization.

Over the past 20 years, resonant ultrasound spectroscopy (RUS)
has been widely applied to determine the elastic modulus, sur-
face defects and residual stress of sample with known geometries,
such as solid sphere, solid cylinder or rectangular parallelepiped
[6–12]. The natural frequencies of ICF capsules also have been used
to determine the internal gas density and calculate the lowest even-
order cavity boundary perturbation amplitudes [13,14]. However,
little attention has been given to evaluate the elastic properties
of the layered spherical shells both in the theory and experiment.
There are two remaining issues that need to be solved for character-
ing the elastic modulus of ICF capsule using RUS technique, the first
one is to derive theoretically the frequency equation of ICF capsule
vibrations, and the second one is to measure accurately the natural
frequencies of ICF capsule.

The purpose of this article is to establish the theoretical and
experimental basis for determining the elastic modulus of ICF cap-
sule using RUS method. To solve the issues above-mentioned, the
frequency equation of an isotropic multiplayer spherical shell was
derived firstly. Then, the natural frequencies of representative cap-
sules with a millimeter-sized diameter were measured with a
combined RUS apparatus. Lastly, we discussed the strengths of RUS
techniques for ICF capsule characterization and potential applica-
tion.

2. Natural frequencies of isotropic hollow spheres

2.1. Analysis of a one-layer hollow sphere

Owing to the widely applications of elastic spherical shells in
various engineering fields, the free vibrations problem has attracted
increasing attentions and become one of the basic problems in elas-
todynamics. The corresponding problem of an isotropic spherical
shell was first investigated by Lamb as early as 1890s [15]. Shah
and his coworker solved the characteristic frequency equation of
an isotropic hollow single-layer sphere by three-dimensional (3D)
elasticity theory and made a numerical comparison between the
3D elasticity theory and shell theory [16,17]. The radial vibrations
of an isotropic two-layer hollow sphere, which is independent of
variables � and � in the spherical coordinate, was considered by
Yehuda Stavsky and J. Barry Greenberg [18]. W.Q. Chen studied the
free vibrations of an isotropic multi-layer hollow sphere using a
state-space method [19]. In the following section, we should dis-

cuss the vibration problem of an isotropic multilayer hollow sphere
by 3D elasticity theory and transfer matrix method.

For an isotropic elastic sphere, the displacement vector u in
spherical coordinates (r, �, �) can be written by a scalar potential
�, vector potentials �1 and �2[20]

u = ∇� + ∇ × (r�1 + ∇ × (r�2)) (1)

Where∇is the usual del operator, �,�1 and �2 satisfy the wave
equations. If there is a harmonic dependence on time, the following
equations can be obtained

∇2� + k1
2� = 0

∇2�1 + k2
2�1 = 0

∇2�2 + k2
2�2 = 0

(2)

Wherek1andk2 are the wave vector of longitudinal and transverse
wave, respectively.

The stress-displacement relation:
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Where�and � are Lame’s constants.
Using separation variable technique, the solutions to Eq. (2) are

given by
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Wherejn(kr),nn(kr)are spherical Bessel functions of the first and

second kinds, respectively. Symbols “

(
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)
” means “cos m�”

or “sin m�”. A, B, C, D, E and F are arbitrary constants.
Substituting Eq. (4) into Eq. (1), the displacement vector can be
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