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a b s t r a c t 

This work aims at designing a numerical strategy towards assessing the nocivity of a small defect in terms 

of its size and position in a structure, at low computational cost, using only a mesh of the defect-free ref- 

erence structure. The modification of the fields induced by the presence of a small defect is taken into 

account by using asymptotic corrections of displacements or stresses. This approach helps determining 

the potential criticality of defects by considering trial micro-defects with varying positions, sizes and me- 

chanical properties, taking advantage of the fact that parametric studies on defect characteristics become 

feasible at virtually no extra computational cost. The proposed treatment is validated and demonstrated 

on two numerical examples involving 2D elastic configurations. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

The role played by defects in the onset and development of 

rupture is crucial and has to be taken into account in order to 

assess the potential failure of mechanical structures. Difficulties 

in this context include (i) the length scale of defects often being 

much smaller than the structure length scale, and (ii) the frequent 

randomness of the location, nature and geometry of defects. Even 

with deterministic approaches, taking such defects into considera- 

tion by standard methods entails geometrical discretizations at the 

defect scale, leading to costly computations and hindering para- 

metric studies for varying defect location and characteristics. 

We address situations that require modeling a single small flaw, 

or a moderate number of such flaws, and therefore do not pertain 

to homogenization. Such isolated defects are usually either omit- 

ted (if small enough) or fully modelled. In the former case, initia- 

tion and eventual propagation of cracks leading to failure may be 

missed, while the latter case both complicates finite element (FE) 

model preparation and significantly increases computational costs 

due to severe mesh refinement in the region surrounding a mod- 

elled flaw. 

In this work, we propose to address the latter issues by re- 

sorting to an efficient two-scale numerical strategy which can 
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accurately predict the mechanical state perturbation caused by 

isolated inhomogeneities embedded in an elastic (background) 

material, without directly modeling them. To ensure compu- 

tational efficiency, the analysis uses only a FE mesh for the 

defect-free structure, whose mesh size is hence not influenced 

by the (small) defect scale. The latter is instead taken into 

account by means of an asymptotic expansion, as previously 

done in Dambrine and Vial (2007) , Brancherie et al. (2008) and 

Bonnaillie-Noël et al. (2010) for modeling surface-breaking void 

defects (see also Silva et al., 2011 where the concept of topolog- 

ical derivative ( Novotny and Sokołowski, 2012; Bonnet and Del- 

gado, 2013; Bonnet and Cornaggia, 2017 ) is used for predicting 

the eventual nocivity of surface-breaking small cracks). Here we 

are addressing the case of a small internal inhomogeneity (or a fi- 

nite number thereof) embedded in an elastic solid. This includes 

traction-free voids as a special case, thus covering (small) ob- 

jects variously referred to in the literature (see e.g. Mery et al., 

20 02; Wang and Liao, 20 02; Mura, 1987 ) as inhomogeneities, 

heterogeneities, cracks, holes, porosities, inclusions... We rely on 

existing results on small-inhomogeneity asymptotics for elastic 

solids ( Ammari et al., 2002; Ammari and Kang, 2007; Ammari 

et al., 2013; Nazarov et al., 2010; Bonnet and Delgado, 2013; 

Bonnet and Cornaggia, 2017 ), which prominently involve elastic 

moment tensors (EMTs) associated with elastic inhomogeneities 

( Ammari et al., 2002; Ammari and Kang, 2007; Bonnet and Del- 

gado, 2013 ), and combine them into a simple computational treat- 

ment, whose capabilities (prominently among them the ability to 

conduct inexpensive parametric studies) are then demonstrated on 

two examples. 
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Fig. 1. Reference (a) and perturbed (b) solids. The inhomogeneity B a located at z is 

the shaded subdomain in (b). 

The paper is organized as follows. After defining the rele- 

vant background and transmission problems ( Section 2 ), the small- 

inhomogeneity asymptotic expansion in terms of the displacement 

perturbation is introduced, focusing on the far field, in Section 3 . 

Therein, the key ingredients for its evaluation (elastostatic Green’s 

tensor and EMT) are surveyed, and the resulting proposed compu- 

tational treatment is given. Two validation and demonstration ex- 

amples are then presented in Section 4 . Section 5 closes the paper 

with concluding remarks and directions for future work. 

2. Problem definition 

We consider a linearly elastic body occupying a bounded do- 

main � ⊂ R 

d (where d = 2 or 3 is the spatial dimensionality), 

whose boundary � is partitioned as � = �D ∪ �N , with �D ∩ �N = 

∅ to ensure well-posedness of boundary value problems. The parts 

�D and �N respectively support a prescribed traction t̄ and a pre- 

scribed displacement ū , while a body force density f is applied in 

�. These boundary conditions are chosen for definiteness, and any 

other set of well-posed boundary conditions could be chosen in- 

stead with minimal changes. On the basis of this fixed geometrical 

and loading configuration, we consider two situations, namely (i) a 

reference solid characterized by a given elasticity tensor C , which 

defines the background solution, and (ii) a perturbed solid consti- 

tuted of the same background material except for a small inho- 

mogeneity whose material is characterized by the elasticity tensor 

C � . The aim of this work is to formulate a computational approach 

allowing to treat case (ii) as a perturbation of the background so- 

lution (i), in particular avoiding any meshing at the small inhomo- 

geneity scale. This will be achieved by applying known results on 

the asymptotic expansion of the displacement perturbation with 

respect to the small characteristic size a of the inhomogeneity to 

case (ii). 

2.1. Background solution (case (i)) 

The background solution in terms of displacement field u aris- 

ing in the reference solid � with elasticity tensor C ( Fig. 1 a) due 

to prescribed excitation (f , ̄t , ̄u ) , corresponding to case (i) above, 

solves the problem 

div ( C : ε [ u ]) + f = 0 in �, t [ u ] = ̄t on �N , u = ū on �D , (1) 

where the linearized strain tensor ε [ w ] and the traction vector 

t [ w ] associated with a given displacement w are given by 

(a) ε [ w ] = (∇w + ∇ 

T w ) / 2 , (b) t [ w ] = ( C : ε [ w ]) · n , (2) 

with n denoting the unit outward normal to �. In ( 2 b) and here- 

inafter, symbols ‘ · ’ and ‘: ’ denote single and double inner prod- 

ucts. 

2.2. Transmission problem for a small inhomogeneity (case (ii)) 

The elastic body occupies the same domain � but now contains 

a small defect, in the form of an inhomogeneity located at z ∈ �, 

embedded in the background material ( Fig. 1 b). The inhomogene- 

ity occupies the domain B a := z + a B, where the smooth fixed do- 

main B ⊂ R 

d centered at the origin defines the defect shape, and 

has elastic properties described by the tensor C � . The inhomoge- 

neous elastic properties of the whole perturbed solid are therefore 

defined as 

C a := C + �C χB a , (3) 

where χD is the characteristic function of a domain D and �C := 

C � − C denotes the elasticity tensor perturbation. 

The displacement field u a arising in the solid containing the 

small inhomogeneity B a due to the same prescribed excitation 

(f , ̄t , ̄u ) , solves the transmission problem 

div ( C a : ε [ u a ]) + f = 0 in B a ∪ (� \ B a ) , t [ u a ] = ̄t on �N , 

u a = ū on �D , u a | − = u a | + and t � [ u a ] | − = t [ u a ] | + on ∂B a , 

(4) 

where the traction operator t � is defined by ( 2 b) with C replaced 

by C � and the ± subscripts indicate traces relative to B a and � \ 
B a , respectively. 

3. Computation of small-inhomogeneity solution asymptotics 

This section develops our proposed methodology. The small- 

inhomogeneity asymptotic expansion in terms of the displace- 

ment perturbation is introduced, focusing on the far field, in 

Section 3.1 . The key ingredients for its evaluation, namely the elas- 

tostatic Green’s tensor and elastic moment tensors, are surveyed 

in Sections 3.2 and 3.3 , respectively, the resulting proposed com- 

putational treatment being then given in Section 3.4 . Some useful 

explicit formulas for the plane strain case are finally gathered in 

Section 3.5 . 

3.1. Asymptotic approximation of displacement perturbation 

We begin by introducing the displacement perturbation 

v a := u a − u , (5) 

where u a and u solve problems (4) and (1) , respectively cor- 

responding to the perturbed and background configurations. An 

asymptotic analysis of v a with respect to the characteristic de- 

fect size a provides a way to evaluate the influence of the loca- 

tion, size, shape and material characteristics of defects on the solu- 

tion u a . Available asymptotic approximations, such as those used in 

this work, nearly always rely on a constitutive linearity assumption 

(here, linear elasticity), with the notable exception of Amstutz and 

Bonnafé (2017) . 

Two kinds of asymptotic expansions of v a may be defined, 

namely inner and outer expansions ( Maz’ya et al., 20 0 0 ). They fo- 

cus on the two scales involved: (a) the structure scale, where 

points are described using “ordinary” coordinates x ∈ �, and (b) 

the defect scale corresponding to the characteristic length a of the 

inhomogeneity, with rescaled coordinates x̄ := (x − z ) /a . This de- 

scription is directly related to the slow and fast variables used in 

Dambrine and Vial (2007) and Brancherie et al. (2008) . 

Inner expansion. The inner expansion has the form ( Beretta et al., 

2011; Bonnet and Delgado, 2013 , Prop. 3.2) 

v a (x ) = a v B [ E ]( ̄x ) + o(a ) , E = ∇u (z ) , (6) 

having set v B [ E ] := u B [ E ] − E · x̄ in terms of the solution u B [ E ] of 

the free-space transmission problem (FSTP) 
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