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a b s t r a c t

This paper estimated the liquefaction potential of a saturated soil deposit subjected to a horizontal
seismic excitation at its base using the total stress approach. A comparative analysis between the
simplified and the nonlinear dynamic methods was used to verify to what extent the simplified method
could be reliable. In order to generalise the reliability of the simplified method for any value of the
maximum acceleration for the used earthquakes, a correction for the maximum acceleration less than
0.3g was proposed based on the comparison of safety factor values determined by the dynamic method
illustrated by the equivalent linear model with lumped masses and the simplified method for a given
profile of soil subjected to 38 earthquakes. The nonlinear behaviour of soil was represented by two
hyperbolic models: Hardin and Drnevich, and Masing. To determine the cyclic resistance ratio (CRR), the
cone penetration test (CPT) based method, the standard penetration test (SPT) based method, and the
shear wave velocity based method were used. The safety factor was calculated as the ratio of CRR/CSR,
where CSR represents the cyclic stress ratio. The results of the proposed correction have given smaller
values of the safety factor compared to the nonlinear dynamic methods for the maximum acceleration
less than 0.3g. In other words, by considering this correction, the most unfavourable case is always given
by the modified simplified method.
� 2017 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

After the Alaska and Niigata earthquakes in Japan in 1964, Seed
and Idriss (1971) developed a simplified procedure based on in situ
tests to evaluate the liquefaction potential, which was defined by a
safety factor calculated by the ratio of the cyclic resistance ratio
(CRR) to the cyclic stress ratio (CSR). Thereafter, this procedure was
modified and improved, in particular by Seed and Idriss (1982),
Seed et al. (1983, 1985) and Youd et al. (2001).

A simplified procedure based on empirical formulations
deduced from the study of a limited number of sites sometimes
underestimates the risk of liquefaction unfortunately compared
with exact methods (dynamic methods). For this reason, it is
necessary to make a comparative analysis between dynamic and
simplified methods in order to verify to what extent the simplified

procedure (Seed and Idriss,1971) is reliable. Therefore, the first goal
of this study is to estimate the seismic response of soil by per-
forming a dynamic analysis to deduce the cyclic stress ratio (i.e.
CSRD), which is calculated as the ratio of the maximum shear stress
deduced from the dynamic analysis to the effective vertical over-
burden stress. The second goal is to compute the CSR by the
simplified procedure (Seed and Idriss, 1971). Finally, the study aims
to evaluate the liquefaction potential in terms of safety factor (Fs)
which is defined as the ratio of CRR to CSR (or CSRD). In the dy-
namic analysis, the soil behaviour is nonlinear with energy dissi-
pation due to hysteresis. To calculate the maximum shear stress
caused by the earthquake in each layer, we use the equivalent linear
method with lumped masses associated with the hyperbolic
models of Hardin and Drnevich (1972) and Masing (1926) to
simulate this behaviour and to deduce the CSRD.

2. Equivalent linear analysis with lumped mass

The equivalent linear analysis with lumped mass is an iterative
procedure used to estimate the nonlinear dynamic response of a
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soil deposit subjected to an accelerogram at rocks. Assuming that
the rocks and interfaces between different layers of soil deposits are
essentially horizontal, we can consider each layer to be linear
elastic and then develop a model with lumped mass in order to
analyse the nonlinear dynamic response of the soil deposit during
an earthquake. Krylov and Bogoliubov (1943) and Bogoliubov and
Mitropolskii (1961) proposed to use an equivalent linear spring
constant and an equivalent damping ratio for a single-degree-of-
freedom system with nonlinear characteristics.

Idriss and Seed (1968) suggested an equivalent linear scheme
where the shear modulus and damping were modelled by a linear
spring and a dashpot, respectively. The parameters of the spring
and the dashpot were computed based on the secant shear
modulus and damping ratio for a given level of shear strain. The
shearmodulus and damping ratio values were iteratively calculated
based on the computed strain. For earthquake motion, Idriss and
Seed (1968) proposed that the properties must be computed for a
strain equal to 2/3 of the maximum strain level in a given layer.
Currently, an expression suggested by Idriss and Sun (1992) that
relates the ratio of the effective shear strain to the maximum shear
strain (Rg) with the earthquake magnitude (M) is mostly used:

Rg ¼ M � 1
10

(1)

This analysis can be conducted in the following steps:

(1) Step 1: Choice of soil layer number required for analysis

The layer number required for analysing the response of soil
deposit is chosen as follows:

(i) The deposit is divided into several layers with uniform ma-
terial proprieties, and the period (T1)i is computed by the
following equation:

ðT1Þi ¼
hiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gGmaxðiÞ
.
gi

r (2)

where hi, Gmax(i) and gi are the thickness, maximum shear modulus
and unit weight of the i-th layer, respectively; and g is the accel-
eration of gravity.

(ii) Each layer is then divided into Ni sub-layers. The value of Ni is
obtained graphically (Idriss and Seed, 1968) according to the
computed value of (T1)i. The entire deposit is divided into N
sub-layers where N ¼ P

Ni. The model with lumped mass is
shown in Fig. 1.

(2) Step 2: Calculation of the dynamic response

When the soil deposit is subjected to a horizontal seismic
excitation at its base, the equation of motion of all soil layers can be
represented in matrix form considering the dynamic equilibrium
for each layer as follows:

m€xþ c _xþ kx ¼ �m€xr (3)

where m is the mass matrix; c is the dumping matrix; k is the
stiffness matrix; x; _x and €x are the displacement, velocity and ac-
celeration vectors, respectively; and €xr is the acceleration of rock.

The mass matrix is diagonal (mij ¼ 0 if isj) and can be obtained
by lumping half the mass of each of two consecutive layers at their
common boundary, then we have

m1 ¼ r1h1
2

; mi ¼
ri�1hi�1 þ rihi

2
ði ¼ 2;3;/;NÞ (4)

where ri and mi are the density and lumped mass of the layer i,
respectively.

The stiffness matrix is constant for a linear-elastic material in
each iteration and is defined as

k ¼

2
6666664

k1 �k1 0 / 0
�k1 k1 þ k2 �k2 / 0
0 �k2 k2 þ k3 / 0
« « « « «
0 0 0 / �kN�1
0 0 0 �kN�1 kN�1 þ kN

3
7777775
N�N

(5)

where ki ¼ Gi/hi, and Gi is the shear modulus.
Viscous damping is added in the form of damping matrix c. In

the original damping formulation proposed by Rayleigh and
Lindsay (1945), the matrix c is assumed to be proportional to the
mass and stiffness matrices:

c ¼ amþ bk (6)

where a (in s�1) and b (in s) are the real scalars.
The damping ratio for the n-th mode of such a system is

xn ¼ a

2un
þ bun

2
(7)

where un is the natural frequency.
The coefficients a and b can be computed using two significant

natural modes i and j. The system of differential equations is solved
numerically at each time step by using the Newmark-Beta algo-
rithm (Newmark, 1959) which connects the accelerations, veloc-
ities, and displacements at the moments t þ Dt and t.

(3) Step 3: Calculation of the maximum shear strain

For each layer i, the unit maximum shear strain, gmax(i), is
calculated according to the maximum interlayers displacements:

gmaxðiÞ ¼
��xiðtÞ � xiþ1ðtÞjmax

hi
(8)
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Fig. 1. Model with lumped mass.
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