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a b s t r a c t

We formulate the problem of a slender structure (a rod) undergoing large deformation under

the action of a moving mass or load motivated by inspection robots crawling along bridge

cables or high-voltage power lines. The rod is described by means of geometrically exact

Cosserat theory which allows for arbitrary planar flexural, extensional and shear deforma-

tions. The equations of motion are discretised using the generalised-𝛼 method. The formu-

lation is shown to handle the discontinuities of the problem well. Application of the method

to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable prob-

lem we find that large deformations have a resonance detuning effect on cable dynamics.

The problem also offers a compelling illustration of the Timoshenko paradox. For the arch

problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure

suppressed entirely at sufficiently high speed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of a continuously distributed system carrying a moving concentrated mass has broad applications in mechanics

and engineering, including space tethers, satellite antennas, launch systems, robotic arms [1], cranes [2], flexible manipulators

[3], high-speed train railroads and highway bridges with moving vehicles [4,5].

The classical example of a moving-mass problem is the idealisation of a vehicle-bridge system. In this case the moving vehicle

is usually treated as a moving force, or load, of constant magnitude, while the bridge is modelled, for instance, as a simply-

supported beam. This problem is therefore more accurately described as a moving-load problem. The moving load assumption

does not take into account the inertial forces of the moving mass and the effect of the beam on the mass. For an overview of the

sizeable early literature on the vibration theory of moving-load problems we refer to Fryba’s monograph [6]. More recent works

on moving loads or masses travelling along beams are [7–9], while more specific studies include moving loads or masses along

curved beams or arches [10–12], inclined beams [13], multi-span beams [14,15] and tapered beams [16]. Meanwhile, loads or

masses travelling along cables (modelled as strings, i.e., without bending stiffness), are studied in Refs. [17–19]. See also the
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review in Ref. [20].

All the above works restrict themselves to beams or cables undergoing small deflections (in Ref. [8] moderately large deflec-

tions are considered) and all consider only two-dimensional bending vibrations (in Ref. [19] equations are first developed for

three-dimensional deformations but these are then condensed to a planar model). With the current drive to use thinner and

lighter materials, in order to save material and reduce costs, large deformations become increasingly important.

In this paper we formulate the moving-load problem for a geometrically-exact Cosserat rod that can undergo arbitrary two-

dimensional flexural, extensional and shear deformations. This planar case seems to cover most moving-load applications. The

restriction to the moving-load problem is justified by the fact that in cases with large deflections the speeds are likely to be

relatively small so that inertial effects can be neglected. As a typical application we are here thinking of inspection robots

crawling along bridge cables or high-voltage power lines [21]. We leave the proper treatment of the moving mass problem, with

inertia included, for a future publication.

Usually in the literature when (moderately) large deformations are considered, approximate equations are derived (usually

involving a geometrically nonlinear strain-displacement relation [8]). These approximate equations are often arguably more

complicated (and less transparent) than the geometrically exact equations. Moreover, these equations then still need to be

solved numerically, typically by employing a Galerkin expansion (using on the order of 10 terms) [8,19]. These Galerkin expan-

sions are well known to suffer from lack of uniform convergence (Gibbs phenomenon) in problems with jump discontinuities,

as occur in the internal force in moving-load problems [22,23].

Purely numerical methods using time-stepping algorithms directly on the equations of motion without initial approximation

is often avoided because of convergence limitations [24]. However, sophisticated current numerical methods can now solve the

exact nonlinear equations with little difficulty and this is the approach taken in this paper.

Cosserat theory describes the evolution of a material director frame, attached to the cross-section of the rod, as it moves along

the rod and in time. By introducing an angle to parametrise the director frame we obtain a formulation free from kinematic

constraints (and from Euler-angle singularities). In this reduced description it is natural to include the centreline integration

within the full discretisation. This gives a more efficient and accurate scheme than existing three-dimensional formulations that

use post-processing (i.e., updating of the rotation matrix, typically by using the Rodrigues formula, to compute the directors,

and integrating the tangent vector, typically by using the trapezoidal rule) to obtain rod shapes [25,26].

As is natural with large deformations, we are not only interested in natural modes of vibration but in transient dynamics of

large amplitude. We therefore discretise the equations of motion using the generalised-𝛼 method in both the spatial and tem-

poral domain. This numerical method is found to have good convergence and stability properties for moving-load problems. Of

course our approach can also be applied to cables and rods with fixed attached masses. Point loads or masses greatly complicate

the description of cable motion because of singularity problems in internal forces [18,22–24].

The paper is organised as follows. In Section 2 we introduce the planar formulation of Cosserat rod dynamics, while the

numerical discretisation is presented in Section 3. In Section 4 we then apply the theory to a few planer problems. The first of

these is a ‘pendulum test’ in which we drop a hinged rod under gravity from a horizontal position for a sequence of bending

stiffnesses approaching the rigid pendulum limit. This problem is also used to verify energy conservation of the numerical

scheme to second-order accuracy. We then apply our method to both a cable and an arch problem. We find interesting new

nonlinear behaviour induced by moving loads on flexible structures. For the cable problem we find that large deformations have

a resonance detuning effect. For the arch problem we find the moving load to have a stabilising effect. Some similar stabilisation

effect of the speed of the load (a decrease of the midspan displacement of a cable under an increase of the speed of a moving

mass) is noted with surprise in Ref. [19]. This behaviour is also observed in Ref. [16]. Both these results are for small deflections.

In our present case, with large deflections, the effect is much stronger and we find that an arch that would collapse under a given

quasi-static load will stand if it is traversed by the same load moving at sufficiently high speed. Conclusions follow in Section 5.

2. Formulation of Cosserat rod dynamics

In Cosserat theory the configuration of a rod deforming in the plane (by arbitrary bending, shear and extension, but not

torsion) is determined by two vector-valued functions (𝐫(s, t),𝐝1(s, t)) ∈ ℝ2 ×ℝ2 of arclength s ∈ [0, L] of the unstressed rod

and time t (L being the length of the unstressed rod). Here r represents the centreline of the rod, while d1 is a unit vector in the

plane of the deformed rod pointing along a material line in the rod’s cross-section. We also introduce the unit normal vector to

the cross-section at s, d2, and parametrise the director (or body) frame {d1, d2} by means of the angle 𝜃 as follows

𝐝1 = cos 𝜃 𝐢 + sin 𝜃 𝐣, (1)

𝐝2 = − sin𝜃 𝐢 + cos 𝜃 𝐣, (2)

relative to the fixed inertial frame {i, j} (see Fig. 1). Note that since the rod is shearable the director d2 will in general not be

equal to the tangent vector, 𝐫′(s, t) ≔ 𝜕r(s, t)∕𝜕s ≕ 𝜕sr(s, t), to the rod. In fact, for this tangent vector we will write

𝐫′ = 𝐯, (3)

with components v1 and v2 in the body frame: v = v1 d1 + v2 d2. (We shall generally use subscripts ‘1’ and ‘2’ to indicate

components of any vector in the body frame and subscripts ‘x’ and ‘y’ to indicate components in the fixed frame {i, j}.) v1 and

v2 − 1 are the shear and extensional strains in the rod, respectively.
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