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a b s t r a c t

The paper deals with guided wave propagation and diffraction in an elastic plate with two and

more parallel grooves (notches). It is a continuation of the preceding studies of a single-notch

diffraction focused on the manifestation of the trapped mode and resonance transmission

effects in the case of several obstacles. Those effects occur at the frequencies close to the

nearly real scattering resonance poles, and the forms of wave localization near the notches

are predetermined by the eigenforms associated with these poles. Therefore, the change of

location of nearly real poles with additional notches and its dependence on their spacing are

the issues of prime concern. The increase in number and assembling in groups of resonance

poles and transmission peaks, which was known for multi-obstacle guides of other nature,

have also been revealed and experimentally confirmed. The theoretical research is conducted

on the basis of low-cost semi-analytical models, and the numerical simulation is experimen-

tally validated through the laser Doppler vibrometry.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The present work is a continuation of preceding papers [1,2] on the case of guided wave (GW) propagation in plates with

several grooves. The introduction of systems of obstacles into the waveguide structures is a common approach to the creation of

artificial structures with special wave properties. Most often they are made using periodic systems of obstacles, e.g., interdigital

contacts or grooves used in acoustoelectronic devices [3], quantum systems [4,5], phononic lattices and crystals [6–8], and

elastic guides with alternating cells [9] or point-wise defects [10].

A deep groove (notch) commonly screens traveling waves, reflecting most of the wave energy, so that the incident wave

packet u0 bounces from such an obstacle. However, at certain frequencies, the incident wave is not reflected but captured and

localized at the notch, exhibiting prolonged oscillations with a gradual wave energy re-emission in both directions [1,2]. This

phenomenon is a typical example of the trapped mode effect [11,12]. Mathematically, the trapped modes are eigensolutions

associated with real and nearly real spectral points of the corresponding time-harmonic diffraction problem, i.e. with the natural

scattering resonance frequencies f n located in the complex frequency plane f at and near the real axis.

With different kinds of obstacles, the resonance poles f n manifest themselves in different ways. For example, a resonance

GW interaction with a horizontal crack (delamination) in an elastic plate results in a sharp blocking of the time-averaged energy

transfer in the steady-state time-harmonic wave field at the frequencies f = Ref n while the crack may hardly affect the wave

propagation at frequencies outside of their vicinity [13]. In this case, a frequency plot of the transmission coefficient 𝜅+ = E+/E0
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is featured by sharp thin dips at f = Ref n; here E+ is the time-averaged wave energy transmitted by GWs behind the obstacle

and E0 is the incident wave energy.

On the other hand, with a system of obstacles, the presence of a nearly real natural frequency f n in a gap band unblocks the

guide in its vicinity [14]. At the curve 𝜅+(f ), it looks like a sharp peak indicating resonance GW transmission at f = Ref n . Since

the resonance poles are located along the real axis with a certain regularity, it yields a typical comb-like or rippled pattern of

the transmission coefficients 𝜅+(f ) intrinsic to guides of various nature [4–6,9,10,14–16]. Physically, this phenomenon results

from the localized modes associated with the Fabry-Perot interference between two reflecting obstacles. The transmission peaks

could also be explained by the eigenmodes of a finite-length specimen cut out from the infinite waveguide that contains the

obstacles [14,16].

The poles f n, and so the transmission peaks, are assembled in local successive groups, and the number of the poles or peaks

in each group is M − 1, where M is the number of obstacles. With two obstacles, every group contains just one pole with

one corresponding transmission peak in a comb-like pattern. Adding the same equally spaced obstacles does not change the

frequency ranges, beneath which the groups of resonance poles are located in the complex frequency plane, but results in

peaks’ splitting into M − 1 thinner subpeaks.

From this point of view, a deep single notch considered in the preceding papers manifests itself as two obstacles yielding

a comb-like pattern of resonance transmission (e.g., Fig. 2 in Ref. [2], as compared with the typical patterns for a simple string

waveguide with point-wise defects in Fig. 3 taken from Ref. [10]). The two obstacles, providing the resonance localization of

oscillation between them, are the vertical sides of the notch while a comparatively thin bottom crosspiece is a resonant wave

accumulator and conductor.

Such a mechanism of wave energy capturing by a notch-like obstacle with its further resonance transmission has been

revealed through analytically-based simulation and experimentally confirmed at the predicted frequencies through laser

Doppler vibrometer (LDV) measurements [2]. With two and more notches, the number of segments between the shielding GWs

butts increases, and specific manifestation of the trapped mode and resonance transmission effects becomes more complicated.

Therefore, the present paper addresses the following issues that arise with a system of notches:

- the change of location of resonance poles with additional notches and how it depends on the notch spacing;

- assembling of the poles in groups and the corresponding increase in number of transmission peaks as it takes place with

several obstacles in the guides of other nature;

- specific forms of wave localization (trapped mode eigenforms) corresponding to different kinds of resonance poles;

- specific features of transient wave capturing and re-emission.

2. Mathematical and experimental frameworks

The basic mathematical model selected from the developed 1D and 2D models for the routine low-cost simulation of GW

propagation in multiply notched plates (Figs. 1 and 2) is the system of Timoshenko plate equations [17].

Yu″ + 𝜌𝜔2u = 0,

𝜇𝜒(w″ − 𝜑) + 𝜌𝜔2w = 0, (1)

YI𝜑″ + 𝜇h𝜒(w′ − 𝜑) + I𝜌𝜔2𝜑 = 0,

where the prime denotes derivatives with respect to the horizontal coordinate x.

The unknown functions u(x), w(x) and 𝜑(x) specify the complex displacement amplitude u = (ux, uz) of the 2D time-harmonic

oscillation ue−i𝜔t by the relations

ux = u(x) − 𝜉𝜑(x),
uz = w(x).

(2)

Here Y and 𝜇 are Young’s and shear moduli, 𝜌 is density, h is plate’s thickness, I = h3/12 is the reduced moment of inertia,

𝜒 = 𝜋2/12 is the shear correction factor, 𝜉 is the local transverse coordinate reckoned from the central axis of the plate, and

𝜔 = 2𝜋f is the circle frequency.

The thickness h in Eq. (1) is different for different segments Dn: xn−1 ≤ x ≤ xn (x0 = −∞, xN = ∞), on which the notch faces

(dock points) xn divide the M-notched strip domain (Fig. 1). Eq. (1) are set in every of the N = 2M + 1 subdomains Dn with their

specific values of the input geometric and material parameters hn, Yn , 𝜌n and 𝜇n. Therefore, in general, the model simulates low-

Fig. 1. Geometry of the problem: elastic strip with M equally spaced notches.



Download English Version:

https://daneshyari.com/en/article/4923849

Download Persian Version:

https://daneshyari.com/article/4923849

Daneshyari.com

https://daneshyari.com/en/article/4923849
https://daneshyari.com/article/4923849
https://daneshyari.com

	tooltip zref@0: 
	tooltip zref@1: 
	tooltip zref@4: 


