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a b s t r a c t

A design of boundary controllers is proposed for (practical) exponential stabilization of
extensible marine risers in three-dimensional (3D) space under sea loads. The design
removes flaws in existing works. Two Lyapunov-type theorems are developed for study of
existence and uniqueness, and stability of nonlinear evolution systems in Hilbert space.
These theorems have their potential use in control design and stability analysis for flexible
systems including marine risers.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In addition to transporting petroleum products from the sea-bed to a surface ship/rig, marine risers, which are slender
beams/pipes, are used in various offshore installations [1,2]. To reduce the riser vibration induced by sea loads, distributed
control and/or boundary control can be used. The distributed control requires an infinite number of actuators implemented
along the riser. Although the distributed control can lead in desired results (such as state-constraints and strong robustness
to disturbances via the use of various control design methods using Barrier Lyapunov Functions [3,4] and backstepping
technique [5]), it is impractical to be implemented because it requires an infinite number of actuators and introduces
significant drag to the riser. On the other hand, the boundary control only requires measurements and actuators im-
plemented at the top-end of the riser. Thus, the boundary control does not introduce drag to the riser and is often used.
Boundary control of both inextensible and extensible marine risers has been extensively considered, see [6–18] and other
related works on boundary control of beams [19], strings [20–22], strips [23,24]. However, the control design is only ma-
tured for 3D inextensible risers [9] and one/two-dimensional (transverse motions) risers in [8,14]. It is noted that in [10]
although extensive risers were considered but strain energy is ignored. Boundary control of extensible marine risers was
initially considered in [11,15]. However, the problem of choosing the design constants to make the time derivative of
Lyapunov function candidates negative definite was left open in both [11,15]. Moreover, the control design in [6,7,11–
13,17,18,25] has flaws, which are either (1) assuming stability to prove stability or (2) wrong use of Sobolev embedding as
discussed in what follows.
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1.1. Assuming stability to prove stability problem

In [7, page 196], the authors made an assumption that the riser/beam is not exposed to compression at any point and at

any time so that η μ+ EAEA
x x2
2 with η μE A, , ,x x being Young's modulus, cross-section area, slopes of transverse and axial

motions, is always nonnegative prior to the control design. It is noted that the term η μ+ EAEA
x x2
2 can be nonnegative when

the riser is not deforming/moving under the pre-tension. However, the riser is deforming during the operation. In certain

segments of the riser, ηx
2 can be very small while μx can be negative. This occurs when some segments of the riser are

exposed to compression. The above discussion leads to a conclusion that the nonnegative assumption on η μ+ EAEA
x x2
2 can

violate at a certain number of points along the riser during operation. The nonnegative assumption on η μ+ EAEA
x x2
2 is then

used to prove negative definite of the time derivative of the Lyapunov functional candidate ̇ ( )V t on page 198 in [7], right

column, i.e., the term ( )∫ ∫γ η γ η μ η− ( ( ) − ) = − +P x t P dx EA dx,
L

x
L EA

x x x
1
2 0 0

2 1
2 0 2

2 2 , where η μ( ) = + +P x t P EA, EA
x x0 2
2 as defined in

(2) in [7], is non-positive due to the nonnegative assumption on η μ+ EAEA
x x2
2 . The above problem means that the authors in

[7] assumed negative definite of ̇ ( )V t to prove stability of the closed-loop system.

1.2. Sobolev embedding problem

In [6] on page 125, the inequality [ ′( )] ≤ [ ′( )]v x t w x t2 , ,2 2, where ′( )v x t, and ′( )w x t, are slopes of axial and transverse
motions, was used to prove the bounds of the Lyapunov function. The authors of [6] mentioned that they took the above
inequality from [26]. However, [26] does not contain this inequality. Actually, the above inequality is wrong as it is clear
from the case that the riser is only axially deformed. The Sobolev embedding [27] does not apply to two independent
functions ( )v x t, and ( )w x t, . The Sobolev embedding was also wrongly used in [6, page 123, 11, page 1083, 12, pages 725,
726, 13, page 949, 17, pages 5804–5806, 18, page 5025, 25, pages 764, 767], i.e., the correct embedding is

([ ]) → ([ ]) → ([ ])W L W L W L0, 0, 0,4,2 3,2 2,2 not vice versa, where ([ ])W L0,m p, is the Sobolev space of order m and degree p.
Specifically, the above works [6,11–13,17,18,25] suffer from the flaw that boundedness of the energy, is a functional of
L2-norm of the first-order spatial derivative of the axial displacement and the second-order spatial derivative of the
transverse displacement cannot guarantee boundedness of L2-norm of higher-order spatial derivatives of these displace-
ments. For example, it is clear from the Sobolev embedding or Poincare's inequality that in [6, page 123] boundedness of

∫ [ ′( )]w x t dx,
L

0
2 and ∫ [ ″( )]w x t dx,

L

0
2 (in the energy functional) cannot guarantee boundedness of ∫ [ ‴( )]w x t dx,

L

0
2 or | ‴( )|w x t, .

The same problem is occurred in [28, page 165].
The above discussion acknowledges contributions of the authors of the works even containing flaws and motivates the

writing of this paper on a new design of boundary controllers, which corrects all the aforementioned flaws for (practical)
exponential stabilization of 3D marine risers under sea loads. The main contributions of this paper include three folds. First,
a mathematical model describing motion of extensible marine risers in 3D under sea loads is derived in an appropriate form
for boundary control design. In comparison with the models used in existing works (e.g., [6–12,14,16,18]), properties of the
model are derived, see Remark 2.1. Second, two Lyapunov-type theorems are developed to study well-posedness and global
(practical) exponential stability of a class of evolution systems in Hilbert space. These theorems just require: (1) continuity
and local monotonicity conditions on the system functions; and (2) “usual” conditions on the Lyapunov function and its
generator (time derivative). Since the usual conditions are of a form similar to those for lumped-parameter systems in
Euclidean space [29], these two Lyapunov-type theorems find a potential application to other distributed-parameter sys-
tems (after transformed to an evolution system in Hilbert space) without requirement of carrying out a tedious calculation
using the Faedo-Galerkin approximation method as in [8,9,30]. Third, boundary controllers are designed to achieve global
well-posedness and (practical) exponential stability of the marine risers based on the proposed Lyapunov-type theorems.
This design corrects all the aforementioned flaws in existing works.

2. Problem formulation

2.1. Mathematical model of marine risers in 3D

The riser's configuration is shown in Fig. 1. The boundary configuration in Fig. 1A is used when three boundary control
forces provided by a 3D guide tube mechanism are available while the one in Fig. 1B can be implemented on an active heave
compensation system [31,32]. Let ( )u v w, , denote the displacements of the riser along the OX-, OY-, and OZ-axis from the
point N0 of the reference riser center line to the point N of the deformed riser center line at time t. To derive the equations of
motion of the riser, we use the extended Hamiltonian principle [33]:
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