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A B S T R A C T

The growing use of complex and irregularly shaped components for safety-critical applications has increasingly
led to the adoption of X-ray CT as an NDE inspection tool. Standard X-ray CT methods require thousands of
projections, each distributed evenly through 360∘ to produce an accurate image. The time consuming acquisition
of thousands of projections can lead to significant bottlenecks. Recent developments in medical imaging driven by
both increasing computational power and the desire to reduce patient X-ray exposure have led to the development
of a number of limited view CT methodologies. Thus far these limited view algorithms have been applied to basic
synthetic data derived from simple medical phantoms. Here, we use experimental data to rigorously test the
capability of limited view algorithms to accurately reconstruct and precisely measure the dimensional features of
an additive manufactured sample and a turbine blade. Our findings highlight the importance of prior information
in producing accurate reconstructions capable of significantly reducing X-ray projections by at least an order of
magnitude. In the turbine blade example a dramatic reduction in projections from 5000 to 24 was observed while
still demonstrating the same level of accuracy as standard CT methods. The findings of the study also suggest the
importance of sample complexity and the presence of sparsity in the X-ray projections in order to maximise the
capabilities of these limited algorithms. With the ever increasing computational power, limited view CT algo-
rithms offer a method for reducing data acquisition time and alleviating manufacturing throughput bottlenecks
without compromising image accuracy and quality.

1. Introduction

Modern engineering is increasingly utilising complex components.
Turbine blades, for example, feature complex cooling channels and
highly optimised curved surfaces, and the rise of additive manufacturing
has given huge potential for extremely complex shapes. Such shapes
present significant inspection challenges to traditional NDE techniques,
as these features can obscure defects or manufacturing errors. X-ray
computational tomography (CT) is one of the few technologies capable of
non-destructively measuring both the external and internal features of a
component [1]. Numerous CT approaches exist, but within industry they
commonly consist of a static X-ray source and a movable detector which
is perpendicular to the source. The sample to be CT scanned is placed on a
movable disk which rotates through 360∘ allowing multiple X-rays pro-
jections to be captured. Standard X-ray CT methods require thousands of
projections, each regularly and evenly distributed through 360∘ to pro-
duce an accurate image [2,3]. Once an accurate tomographic image is
generated it can be used to assess the specimen for flaws, quality control

and undergo dimensional analysis by comparison with CAD e.g., [1].
One of the major downsides of X-ray CT is the time consuming data

acquisition process which can lead to significant bottlenecks. To alleviate
these bottlenecks in throughput, companies may be forced to purchase
additional X-ray CT capability at great cost or reduce individual X-ray
exposure times lowering the signal-to-noise rato and image quality.
Spurred by the ever increasing power of computers and the increasing
flexibility of graphics cards for general purpose computing [4], a variety
of limited view tomographic techniques capable of generating high
quality images with less data have been developed for medical purposes
e.g., [5–13]. Although much theoretical work has been conducted over
the past decade on limited view tomography the algorithms developed
have been tested on simple synthetic examples (e.g., Shepp - Logan
phantom [2]) typically with parallel ray geometry, which poorly mimics
true industrial applications where ray path geometries and noise are
an issue.

Routine medical X-ray CT applications are limited to disease or
trauma detection and the precise measurements are often not required as
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other, higher resolution and targeted, diagnostics methodologies (e.g.,
MRI) may be applied. In contrast, industrial CT requires precise high
resolution and high contrast images to provide meaningful dimensional
measurements for quality control purposes. These differences in the ob-
jectives of medical and industrial X-ray CT may prevent the direct
transfer of the newly developed imaging algorithms. Here we survey and
quantify the performance of limited view tomographic algorithms
developed for medical applications to reconstruct and precisely measure
the dimensional features of a turbine blade and a simple additive man-
ufactured sample using industrial X-ray data and setup.

2. X-ray CT theory

Traditionally X-ray tomographic reconstructions are computed using
the filtered back-projection approach or its cone beam equivalent the
FDK method [2,3]. The main advantages of the filtered back-projection
method are its speed of computation, since it relies on the computation of
the Fast Fourier Transform and its inverse, and the low computational
memory requirements. Despite these advantages the filtered back pro-
jection approach does suffer from a number of drawbacks primarily
associated with the data acquisition, where many hundreds or thousands
of projections that are uniformly distributed over 360∘ are required to
produce accurate reconstructions [2]. The incorporation of prior
knowledge (e.g., material properties and geometry) to aid in the recon-
struction is usually available in NDE applications but is often difficult to
accomplish.

An alternative method to filtered back-projection imaging is to relate
the measured projection data to a set of unknown image pixels via a set of
algebraic equations [2,10,16]. The measured amplitude of a mono-
chromatic X-ray through an object is given [2] by

I ¼ I0 exp
�� ∫ rμðx; yÞds

�
; (1)

where I is the measured X-ray intensity at the detector, I0 is the intensity
of the monochromatic X-ray source and ∫ rμðx; yÞ ds is the ray-path in-
tegral through the object with radiographic attenuation μ(x,y). Equation
(1) maybe discretised and re-written as

�log
I
I0
¼

Xn

i¼1

aiνi; (2)

where i indicates the pixel number, ai is the weighting of each pixel based
on the length of the X-ray raypaths crossing each pixel and ν is the
attenuation value of the pixel. For m observations (2) may be put into
matrix form b ¼ Ax where b2 Rm are the X-ray projections, A2 Rm�n is a
matrix of pixel weights that relates the image to the data projections and

is often called the projection matrix and x2 Rn are the image pixels
(Fig. 1). These systems of equations are usually contaminated by noise,
underdetermined and singular and therefore must be solved in a least
squares sense [2,10].

The main advantage of formulating the tomographic reconstruction
as a least squares inverse problem over the more routinely used filtered
back-projection method is its flexibility if large numbers of uniformly
sampled data over 360� are unavailable from which to produce an
adequate reconstruction [2]. In addition, prior knowledge such as posi-
tivity (x � 0) or the minimum and maximum values of each pixel
(a � x � b) may be easily incorporated as constraints. The major
downside of the algebraic reconstructions are their relatively slow
compute times and solution convergence. However, with the ever
increasing power of computers and the advent of graphic card processors
the application of least squares inversion for X-ray tomography is rapidly
becoming viable, particularly if the acquisition time is reduced by
obtaining fewer projections e.g., [5].

2.1. Algebraic tomographic imaging

The system of equations to be solved in CT tomographic imaging are
typically large (n ¼ 262144 for 512 � 512 pixel image) so iterative least
squares methods must be used to effectively solve the problem [2,10,16].
A series of algebraic reconstruction methods have been developed over
the years which iteratively solve the least squares the problem (for
example see Refs. [2,16] for a review). Here, we shall consider two
routinely applied reconstruction techniques, the Algebraic Reconstruc-
tion Technique (ART) and the Simultaneous Iterative Reconstruction
Technique (SIRT), which solve the iterative least squares problem by a
series of forward- and back-projections.

The ART method is a row action method where the kth iteration of the
image is estimated by sweeping through each row of the matrix A and
projecting the solution onto orthogonal hyperplanes e.g., [2,16]. These

hyperplanes are defined as bi � aTi x
½kði�1Þ � where bi is the ith component of

the data vector b, ai is the ith row of A written as a column vector and
x[k(i�1)] is the image vector from the k(i�1) iteration. The update to the
image vector is computed by orthogonally back-projecting the hyper-
plane by multiplying it by ai Practically, the process corresponds to
calculating a residual between the measured and the estimated projec-
tion made from forward modelling through the current image, then back-
projecting this residual to update the image. A single iteration x[k(i)] is
completed once the solution has been updated for all rows of A. After
each row iteration its prior constraints on the solution such as positivity
may be applied. The ART algorithm has been shown to have a conver-
gence history which initially improves the solution to better approxi-
mations of the true image but at later iterations diverges away from this.
This convergence history is known as semiconvergence and has been
shown in the ART case to be very fast obtaining a solution in just a few
iterations (Algorithm 1 [16]).

Fig. 1. Illustration of a single ray-path (Ai,n) passing through a 5 � 5 pixel image array and
recorded on the ith detector bin.
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