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a  b  s  t  r  a  c  t

Measuring  occupancy  can  facilitate  energy  efficiency  in  non-domestic  buildings,  when  control  systems
are  able  to  adjust  heating  and cooling  based  on demand  rather  than  fixed  schedules.  The  variable  “occu-
pancy  profile”  itself  is rarely  considered  as  a control  system  parameter  in building  energy  management
systems  (BEMS),  and  this  is largely  because  reliably  measuring  occupancy  in  the  past  has  been  too  difficult,
expensive,  or  a  mixture  of  both. Occupancy  detection  is possible  using  e.g. CO2 sensors,  passive  infra-
red  (PIR)  detectors,  which  can  provide  a  basic  trigger  for services,  but  the  actual  occupancy  count,  and
therefore  the  expected  load  on building  services,  requires  a  step  change  in  instrumentation.  Advanced
occupancy  sensors  developed  from  a heterogeneous  multisensory  fusion  strategy  offer  this,  improv-
ing  control  system  performance,  e.g.  turning  off  services  out of  hours,  and  not  over-ventilating,  saving
energy,  while  not under-ventilating  during  occupancy,  benefitting  comfort  and  health.  While  this  is the
case,  there  is  a shortage  of  any  systematic  methodology  for developing  robust  and  reliable  occupancy
monitoring  systems  from  heterogeneous  multi-sensory  sources.  In  this  paper  we  describe  an  innova-
tive  sensor  fusion  approach  utilising  symmetrical  uncertainty  (SU)  analysis  and  a genetic  based  feature
selection  for  building  occupancy  estimation.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Building energy management systems (BEMS) are often
employed to reduce operational energy used in non-domestic
buildings. Technology advancements in sensors and telecommu-
nications have seen installation costs of BEMS reduce drastically,
widening their uptake (CIBSE, 2009; Loveday & Virk, 1992), energy
savings using correctly commissioned BEMS can approach 15%
(CIBSE, 2009). However, BEMS have failed to fully optimise energy
use in many non-domestic buildings (Zeiler et al., 2006) for several
reasons, including that sensors have been reported to suffer from
long term drift, lack of scheduled maintenance and technical fail-
ure (Levermore, 2000). Control strategies used for running BEMS
may  not always be optimal (Erickson, Carreira-Perpinan, & Cerpa,
2011). We  hypothesise that the BEMS itself could be provided with
much better data to make control decisions – conventional heat-
ing, ventilation and air-conditioning (HVAC) operations often make
use of temperature and humidity as sole control inputs, which often
leads to energy waste (Agarwal et al., 2010). While the challenge
has been to balance energy efficiency and a comfortable climate
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(Zhu, Rui, & Lingfeng, 2010), there is little point in maintaining a
comfortable empty building (many systems are programmed with
fixed occupancy patterns), so a clear energy efficiency improve-
ment would be to feed occupancy data to building controls, services
being provided only when needed (during occupied times). This
basic idea is not new of course − previous studies suggest up to
56% energy savings with occupancy-driven HVAC (Sun, Wang, &
Ma,  2011; Tachwali, Refai, & Fagan, 2007). Ideally, building con-
trols should automatically respond to dynamic occupancy loads,
although current BEMS often lack this capacity and usually rely on
fixed assumptions to operate HVAC and electrical systems, often
wasting energy. For example, such information is useful for deter-
mination of HVAC heat loads (Chenda & Barooah, 2010), as well
as optimal run time, required heating, cooling and distribution of
conditioned air, and optimal selection of temperature set points (Li,
Calis, & Becerik-Gerber, 2012).

Using occupancy data to run building controls is compelling,
but a precise and reliable way  of measuring it has in the past
been difficult. Existing building controls may use an abstracted
figure from atmospheric gases or a simple binary value, whereas,
advanced controllers capable of inferring occupancy numbers from
these have not been significantly commercialized, with the few
inroads made into commercialization being quite recent (Dounis
& Caraiscos, 2009). Current technologies have other shortcomings,
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including at component level, sensor drift (e.g. gas sensors), pri-
vacy concerns (video), component failure, but operationally, also
intrusiveness, effects of change of use and insufficient commis-
sioning. More reliable and robust building occupancy sensors can
be produced using sensor fusion, aiming to estimate occupancy
levels by merging information from various indoor environmen-
tal sensors (Ekwevugbe, Brown, & Fan, 2012; Ekwevugbe, 2013;
Ekwevugbe et al., 2013). Sensor fusion aims to merge the strong
qualities of various sensors, whilst minimising their weaknesses,
thus outperforming single sensor (Hall & Llinas, 2001). Because of
the synergistic nature of sensor use, sensor fusion frequently may
be more cost effective than traditional controls (Dodier et al., 2006).

2. Trends in building occupancy measurement

Occupants’ behaviours and activities have significant impact
on energy use (Richardson, Thomson, & Infield, 2008; Richardson
et al., 2010). Many authors have examined various approaches
to occupancy detection in a non-domestic setting, a comprehen-
sive overview of existing methods is provided by Nguyen and
Aiello (2013), and Yang et al. (2016). In many non-domestic build-
ings, Passive infrared (PIR) sensors are most commonly used for
occupancy sensing, usually for lighting controls (Delaney, O’Hare,
& Ruzzelli, 2009), but provide a simple binary output, i.e Occu-
pied/Unoccupied, mainly to limit unnecessary lighting. Often, such
sensors fail to detect stationary building users, plunging them
into darkness. Sometimes a nuisance, sometimes amusing, but fre-
quently dangerous, a better approach was needed, which is to
couple PIR with other sensors using advanced algorithms; Dodier
et al. (2006) proposed a Bayesian belief network comprising of three
PIR and a telephone sensor, to probabilistically infer occupancy,
this being modelled with a Markov chain, to a detection accuracy
of 76%. This was an improvement over conventional PIR sensor, but
was unable to provide an actual occupant count.

Dong et al. (2010) improved occupancy detection robustness,
using information from CO2, acoustic sensing and PIR to estimate
occupant count in an open-plan office (Dong et al., 2010; Lam et al.,
2009a; Lam et al., 2009b). Using information theory, the most rel-
evant information for occupancy prediction was  extracted from
sensor data, and fused with three machine learning algorithms
(support vector machine, artificial neural networks, and a hidden
Markov model), which reached an average accuracy of 73%.

Several stochastic (Page et al., 2008; Richardson et al., 2008) and
linear regression (Abushakra & Claridge, 2008) models have also
been proposed for modelling occupants’ presence and interactions
with their space. Generally, they tend to be applied to single occu-
pants’ spaces, (or laboratory test cells) where occupancy dynamics
are relatively simple. It is not clear, how these models can be applied
in non-domestic buildings with more dynamic environments, and
greater variations in occupancy.

Monitoring office equipment may  facilitate occupancy count-
ing, use of equipment generally indicating a room being used, but
is conventionally expensive. Brown et al. (2011) established the
electrical appliance usage patterns (such as desktop PCs), using
portable (low cost) temperature sensors, and scanning network
activity − duty cycles were detected to 97% precision. Melfi et al.
(2011), using existing IT infrastructure, monitored MAC and IP
addresses, keyboard and mouse activities as occupancy proxies.
Reported detection accuracy was 80% and 40% at building and floor
level respectively. Others have applied the use of global position-
ing system (GPS) and Wi-Fi connection for occupancy detection
to a reported accuracy of 96.7% (Zhao et al., 2015). Generally, ICT-
based occupancy detection systems may  be suitable for occupancy
driven- power management of electrical appliances, but limited for

occupancy numbers estimation in buildings, where routine ICT use
may  not be a given.

Wearable sensors are increasingly used for monitoring occu-
pants; Gillott et al. (2010), Gillott et al. (2009) determined
occupancy patterns in a residential building, using ultra-wideband
RF-based tags worn by occupants, tracking them to 15 cm in three
dimensions. However, occupants’ willingness to wear these may
be a critical factor here, often due to privacy concerns. Vision-
based systems have also been used (Benezeth et al., 2011; Tomastik,
Yiqing, & Banaszuk, 2008), although occupants’ privacy is a concern,
plus all sensing is line of sight, limiting use in partitioned open plan
offices.

It becomes clear from previous work that a methodology for
sensor selection for occupancy sensing has yet to be formalised.
Arbitrary sensor selection may  not always guarantee optimal and
robust occupancy sensing. Only a handful of studies which have
applied heterogeneous sensors for occupancy number estimation
utilised any systematic methodology for sensor features selection.
For instance, Dong et al. (2010), applied information gain for its
feature selection methodology, although this is known to be biased
with data containing more values. This study utilises a symmetrical
uncertainty analysis, which is known to overcome this limitation
for feature extraction.

3. Control of building energy systems

Building controls should reduce energy use and maintain
indoor thermal and visual comfort, as well as indoor air quality.
Standard control schemes, such as “on/off” and Proportional-
Integral-Derivative (PID) are widespread in buildings (Loveday &
Virk, 1992). Simple thermostats have been used for indoor tem-
perature regulation, but temperature overshoots occur, resulting
in energy waste (Dounis & Caraiscos, 2009), and generally, do not
provide optimal control. PID controllers were introduced, providing
a set point (proportion), long term stability (integral) and response
speed (derivative), and where controllers are tuned beyond factory
tuning, performance may  improve markedly, but also incorrect set-
tings may  increase instability (Dounis & Caraiscos, 2009). Generally,
PIDs struggle for processes with large time constants, significant
noise and non-linearities (Kaya, Tan, & Atherton, 2007; Li, Ang, &
Chong, 2006), although performance can be improved by cascading
multiple PID controllers (Kaya et al., 2007), or by combining feed-
back and feed-forward controllers (Thomas, Soleimani-Mohseni,
& Fahlén, 2005). The use of advanced control schemes, such as
computational intelligence (CI) based strategies (or in combination
with PIDs), is considered promising (Kukolj, Kuzmanovic, & Levi,
2001; Martins & Coelho, 2000). CI techniques have coped well with
noise, are adaptive in highly dynamic environments, can be used to
learn and generalize from examples, and can generate predictions
quickly (Hagras et al., 2008; Rafiq, Bugmann, & Easterbrook, 2001).
Optimal (Zaheer-Uddin & Zheng, 2000), predictive (Chen, 2001;
Henze, Dodier, & Krarti, 1997) or adaptive (Curtis, Shavit, & Kreider,
1996) controllers have been used to ensure indoor thermal com-
fort, as well as to limit set-point overshoots and save energy. These
controllers need a bespoke model per building (which is mostly
non-linear), and customised control schemes (Gouda, Danaher, &
Underwood, 2006). Where >95% of controllers are traditional, e.g.
PID or on-off. While fuzzy based learning systems are appearing in
e.g. smart thermostats for homes, it is still reasonable to say that
generally, more advanced control schemes for non-domestic use
are quite rarely seen outside the laboratory (Dounis & Caraiscos,
2009). However, in recent years advanced controllers based on
model predictive control (MPC) strategies for HVAC systems are
gaining favour, with the benefit of a system model for anticipa-
tory control functions, rather than corrective control (Preglej et al.,
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