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A B S T R A C T

Beams with large thin-walled cross sections are not generally following the classical beam theories such as Euler-
Bernoulli and Timoshenko theories. In free vibration, the cross section is deformed by the inertia induced body
loads. These deformations may have significant effect on the beam modal frequencies, especially in applications
involving non-structural masses. This paper presents a method to include the effect into vibration modal results
obtained by the classical beam theories. Generalized mass and stiffness of the classical results are modified
according to kinetic-, and strain energies of the cross section deformation. The method is validated in typical
engineering case studies against fine mesh Finite Element Method and excellent agreement is found.

1. Introduction

Beams with thin-walled cross sections are used in several fields of
structural engineering including applications in marine, aerospace and
bridge structures due to their excellent stiffness to weight ratio. Several
models have been developed for modal analysis of these thin-walled
beams. Euler-Bernoulli beam model [1] is accurate for slender beams
with small cross section dimensions relative to length of flexural waves
of the studied vibration mode. Due to its simplicity and availability on
commercial Finite Element software, the model is still widely used in
practical engineering. The shear-deformations can be accounted by
Timoshenko beam theory [2–4] that provides significantly more
accurate modal frequencies in beams that are deep relative to the
length of flexural waves of the studied vibration mode. Drawback of
practical applicability of Timoshenko’s beam model has been definition
of shear correction factors for different cross sections; see for example
Refs. [5–8]. However, these methods cannot account the influences of
local deformations that occur solely on the beam cross-section plane.

Effects of inertia induced cross section deformations have been
studied by NACA in the 1950s and 60s. The phenomenon was observed
in vibration tests of box beams [9] and the effect has been analyzed for
box beams in Ref. [10]; monocoques in Ref. [11]; angled sections in
Ref. [12] and channel sections in Ref. [13]. Several bridge beams were
studied in Ref. [14] by including cross section deformation into
equations of motion. Generalized beam theory has been developed to
take all the above-mentioned effects elegantly into account inside the
beam formulation [15]. It has been applied for vibration problems for
example in Ref. [16]. Carrera et al. have applied unified formulation

[17] to Finite element vibration analysis of arbitrary beams [18]. The
unified formulation allows any order beam theory to be systematically
analyzed by one-dimensional Finite Element Method. Complicated
structures have been studied by the method in Refs. [19,20]. Beams
with non-structural masses have been studied in Refs. [21,22]. High
order generalized beam theories give accurate result in comparison
with 3D FE-models. However, even if these analyses require signifi-
cantly less computational effort than the 3D FEM, several hundred
DOFs are still needed. Thus, there is a need to develop the classical
simple beam models further to account the effects of local cross-section
deformations on the global beam level modes.

This paper provides a method to take the inertia induced local
deformation effects into account in classical beam theories. The
correction is based on the energy involved in the cross section
deformation. It can be used to correct the beam modal results
independent of the solution of the beam problem. This allows use of
detailed numerical models where necessary, while carrying out
straightforward parts of the problem effectively by simple analytical
formulae. This kind of approach has value in conceptual design of
structures in which the accuracy of solutions must be reasonable, while
the computational cost must be extremely light.

2. Method definition

2.1. Assumptions and limitations

The beam axis is denoted with x-coordinate, while the vertical
direction is denoted by z-coordinate. This study is limited to analysis of
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beams with symmetric cross sections with respect to xz-plane. Applied
coordinate system, and structural dimensions are presented in Fig. 1a.
Cross section coordinate s goes around centerline of the cross section,
and n is perpendicular to s.

Small amplitude free vibration is assumed. Cross sections are
assumed to have global reference points(s) that follow global bending
behavior of the beam axis. The global reference points are defined in
stiff points of the cross section, typically in intersections of plated parts.

This study includes thin-walled cross sections, in which thicknesses θ
are significantly smaller than cross section main dimensions
(θ≪b& θ≪h). Examples of possible cross sections and their global
reference points are presented in Fig. 1b.

Length of flexural waves of beam vibration is assumed long in
comparison with cross section dimensions (b≪λ& h≪λ). This means
that locally in a point of cross section, the transversal bending stiffness
of cross section dominates the longitudinal bending stiffness by nodes of

Nomenclature

A Amplitude, (Area in Eq. (47))
b Breadth
e Unit vector
E Young’s modulus
f Frequency in Hz
G Shear modulus
h Height
I Second moment of area
K Generalized Stiffness
L Length
m Mass per unit length of beam
M Generalized Mass
q Distributed load
r Response
S Stiffener spacing
t Time
T Kinetic energy
U Strain energy
w Displacement
x, y, z, s, n Coordinates

Greek Symbols

δ Convergence limit

θ Thickness
λ Wave length
ν Poisson’s ratio
ξ Generalized coordinate
ρ Mass density of the material
Ψ Deflection mode shape
ω Frequency in rads−1

Subscripts & Superscripts

* Corrected value
B Global beam
C Cross section
CR Cross section quantity Relative to global point unit

amplitude enforced harmonic motion
dyn Dynamic
ef Effective
i Mode number
n Iteration step number
peak Peak value
PU Periodic unit
S Stiffener
sta Static

Fig. 1. (a) Definition of coordinate systems and dimensions. (b) Examples of thin-walled symmetric cross sections, global reference points indicated by circles.
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