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A B S T R A C T

In this paper, a mode identification technique in the context of spline finite strip method (SFSM) is presented to
compute the contribution of primary (global, distortional and local) and secondary (shear/transverse extension)
buckling modes. The base vectors corresponding to individual buckling modes are developed based on the
principles of generalized beam theory. The buckling mode shape in SFSM is approximated as a linear combi-
nation of these orthonormal base vectors to evaluate the participation of individual buckling mode. The pro-
posed mode identification technique is able to successfully quantify the participation of different buckling modes
and the mode participation is comparable with mode identification using finite strip method (FSM) and gen-
eralized beam theory (GBT). Illustrative examples are presented to calculate the participation of individual
modes in cold-formed steel sections under different loading and boundary conditions. Also the specific appli-
cation of mode identification in SFSM is demonstrated.

1. Introduction

Cold-formed steel design is governed mainly by buckling of the
cross section or member as a whole and design of sections using Direct
Strength Method (DSM) incorporates the following three primary
buckling modes; local, distortional and global buckling. Generally local
buckling has significant post-buckling strength reserve, distortional
buckling has moderate and global buckling has negligible reserve.
Hence, identification of individual buckling mode in a generalized de-
formation mode becomes important in the calculation of post-buckling
capacity for the design of cold-formed steel members. Also the calcu-
lation of elastic local, distortional and global buckling stresses is a
prerequisite for design using DSM.

Elastic buckling stresses are determined analytically or by using
numerical methods. Elastic local and global (Euler) buckling stresses
are derived analytically in Timoshenko and Gere [1], whereas in the
case of distortional buckling, elastic buckling stress is determined from
analytical model of flange-lip combination with translational and ro-
tational stiffness [2–4]. Numerical evaluation of elastic buckling
stresses are performed traditionally using finite element, finite strip or
spline finite strip method. The finite strip method (FSM) being used in
DSM for the calculation of buckling stresses incorporates trigonometric
function in the longitudinal direction and polynomial interpolation
function in the transverse direction of the plate. The continuous inter-
polation function in longitudinal direction makes the incorporation of

intermediate support and concentrated loads difficult in FSM. The
discontinuities and variations in longitudinal direction are incorporated
in finite element method (FEM) and spline finite strip method (SFSM).

The buckling analysis of cold-formed steel sections using the clas-
sical methods result in numerous buckling modes and the designer's
interest lies in the determination of local, distortional and global
buckling modes for design using DSM. Another approach for the de-
termination of elastic buckling stresses is generalized beam theory
(GBT) which is an extension of classical beam theory transformed from
nodal to modal degree of freedom. The basic principles of GBT for the
analysis of cold-formed steel sections with cross sectional distortion was
introduced in [5]. Explicit equations for individual buckling modes
under axial load and uniform bending moment by considering geo-
metric nonlinearity in basic equations of GBT was introduced by [6]. To
decompose the FSM buckling solutions into pure global, distortional,
local and shear/transverse extension modes in cold-formed steel open
cross sections, GBT principles were integrated into FSM [7–9]. The
method known as constrained finite strip method (cFSM) was extended
to closed and branched cross sections for decomposing local buckling
mode from combined global-distortional mode [10]. In the context of
FEM, the GBT principles were introduced to constrain the finite element
model to buckle in a particular pure buckling mode [11,12]. Con-
strained finite element method has been presented [13,14], which en-
force the finite element model to buckle in pure local, distortional and
global buckling modes. A thin-walled shell finite element was proposed

http://dx.doi.org/10.1016/j.tws.2017.07.005
Received 8 March 2017; Received in revised form 12 June 2017; Accepted 10 July 2017

⁎ Corresponding author.
E-mail address: ajeeshss.tkm@gmail.com (S.S. Ajeesh).

Thin-Walled Structures 119 (2017) 593–602

Available online 07 September 2017
0263-8231/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/02638231
http://www.elsevier.com/locate/tws
http://dx.doi.org/10.1016/j.tws.2017.07.005
http://dx.doi.org/10.1016/j.tws.2017.07.005
mailto:ajeeshss.tkm@gmail.com
http://dx.doi.org/10.1016/j.tws.2017.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2017.07.005&domain=pdf


in the context of constrained shell finite element analysis [15] to cal-
culate pure deformation modes. In SFSM, decomposition of buckling
modes into combined global-distortional and local mode was proposed
[16]. In a recent study by authors [17], a constrained spline finite strip
method (cSFSM) was proposed to decompose buckling modes into pure
local, distortional and global buckling modes.

An approach known as mode identification technique has been used
by researchers to compute the contribution of individual buckling
modes from generalized buckling mode shapes. The mode identification
technique using cFSM base functions has been successfully im-
plemented in the FSM buckling mode shapes [18]. The various factors
determining the calculation of mode contributions like choice of base
functions, orthogonalization and normalization of vector spaces were
assessed in [18]. The mode identification in FSM was also extended to
members with general end boundary conditions [19]. The mode iden-
tification technique has been implemented in shell finite element ana-
lysis for cold-formed steel sections subjected to uniaxial compression
and bending [20,21]. GBT cross sectional deformation modes were also
introduced to evaluate the participation of local, distortional and global
modes in FEM buckling mode shapes [22]. To the authors’ knowledge,
this is the first time mode identification study in the context of spline
finite strip method is presented.

In the present study, the participation of global, distortional, local
and other (shear/transverse extension) deformation modes are eval-
uated from generalized buckling mode shapes in SFSM. The base
functions in the context of constrained spline finite strip method
(cSFSM) are derived based on cFSM and GBT principles. The calculation
of mode participation in SFSM is performed for cold-formed steel sec-
tions under various loading and boundary conditions. The proposed
mode identification technique using SFSM is advantageous compared to
FSM in incorporating discontinuous boundary and loading conditions.
Also the analysis using SFSM is computationally less intensive than
mode identification using traditional finite element techniques. Even
though GBT studies are available for mode identification, the proposed
method is yet another credible formulation for mode identification in
the classical framework.

2. Base functions for mode identification in SFSM

The base functions for local, distortional, global and shear/trans-
verse extension (other) modes are determined from mechanical as-
sumptions of deformation modes based on GBT principles. These base
functions being represented as vectors of nodal displacements, are also
termed as base vectors. For calculation of mode contribution, the base
vectors needs to be orthogonalized and normalized. The displacements
corresponding to buckling modes in an SFSM analysis are represented
as linear combination of base vectors. The SFSM formulation and the
steps for determining the base vectors are briefly presented in this
section.

2.1. SFSM formulation

In SFSM, the thin-walled plate element is modelled as ‘2D’ strips
having four degree of freedom along each section knot, ‘u’, ‘v’, ‘w’ and
‘θxz’ as shown in Fig. 1a. For in-plane deformations ‘u’ and ‘v’, 2D plane
stress condition is assumed whereas for out of plane displacements ‘w’
and ‘θxz’, Kirchhoff's plate theory is employed. The displacement func-
tions are expressed as the product of nodal displacements and shape
functions in longitudinal and transverse direction. In transverse direc-
tion, Lagrangian interpolation function is assumed for membrane (in-
plane) displacements and Hermitian interpolation function for flexural
(out of plane) displacements. In the longitudinal direction, cubic spline
(B3) having four sections shown in Eq. (1) is implemented (Fig. 1b).
Spline amendment schemes proposed by Fan [23] by including one
additional section knot at each end (Fig. 1c) satisfying natural and
geometric boundary conditions has been adopted.
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The strain-displacement relation and stress-strain relation are es-
tablished and by applying the principle of minimum total potential
energy, the stiffness equation is developed. The membrane and flexural
characteristics has been combined for analysing folded plate member
like cold-formed steel section. The transformation matrix is used to
transform the element stiffness equation from local to global direction
and stiffness matrices are assembled to form global stiffness matrix. For
buckling analysis, the increase in potential energy of membrane forces
due to flexural and membrane deformations, developed by Plank and
Wittrick [24] has been adopted. The generalized Eigen buckling equa-
tion has been formulated by applying the principle of minimum total
potential energy as shown in Eq. (2), where K[ ] and K[ ]g are the elastic
and geometric stiffness matrices respectively, ‘λ’ is the buckling load
factor and [Δ] is the matrix of Eigen vectors corresponding to various
buckling modes.

− =K λ K([ ] [ ])[Δ] 0g (2)

2.2. Base vectors for buckling modes

The base vectors corresponding to buckling modes are developed
from mechanical criteria based on GBT principles. The displacement
field used for the determination of base vectors are identical to SFSM.
The restraint matrices, ‘RG’, ‘RD’, ‘RL’ and ‘RO’ corresponding to local,
distortional, global and other (shear/transverse extension) deformation
modes are developed based on these criteria. The criteria considering
the co-ordinate system shown in Fig. 1a are illustrated below:

(i) Transverse extension, ‘εx ’ and in-plane shear strain, ‘γxy’ of a flat
plate strip has to be zero. Also the local displacement ‘v’ has to be
linear in ‘x’ direction within the flat strip.

(ii) The cross section elements are associated with non-zero warping
displacements. Also the cross section is in transverse equilibrium.

(iii) There is no transverse flexure of the cross section, ie the cross
section is undistorted.

For global buckling (G), all the three criteria has to be satisfied
whereas in the case of distortional buckling (D), criteria (iii) is violated. By
applying the mechanical criteria, the restraint matrix for global-distor-
tional subspace, ‘RGD’ is developed by relating the warping displacements
at edges of flat plate with other degree of freedom. The ‘RGD’ matrix is
decomposed into ‘RG’ and ‘RD’ matrix by multiplying with warping dis-
placements corresponding to global and distortional modes derived from
GBT cross sectional analysis. In the case of local buckling (L), both criteria
(ii) and (iii) are violated and the possible displacements are local dis-
placement in local ‘z’ direction of sub nodes and external nodes and ro-
tation ‘θxz’ of all nodes. The base vectors for ‘RL’ matrix are generated by
imposing unit displacement at possible degree of freedom of each node
keeping all other degree of freedom as zero. The restraint matrix for shear/
transverse extension (other) modes (O), ‘RO’ includes all the deformation
modes which are not included in global, distortional or local category and
hence all the mechanical criteria are violated here. The restraint matrix,
‘RO’ is determined from the null space of ‘RGDL’ subspace which is a
combination of global, distortional and local sub space as shown in Eq. (3).

=R R 0o
T

GDL (3)

The restraint matrices developed for individual modes consists of
linearly independent base vectors of nodal displacements of cross
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